Asymmetric radical carboesterification of dienes
Ontology highlight
ABSTRACT: The straightforward strategy of building a chiral C-O bond directly on a general carbon radical center is challenging and stereocontrol of the reactions of open-chain hydrocarbon radicals remains a largely unsolved problem. Advance in this elementary step will spur the development of asymmetric radical C-O bond construction. Herein, we report a copper-catalyzed regioselective and enantioselective carboesterification of substituted dienes using alkyl diacyl peroxides as the source of both the carbon and oxygen substituents. The participation of external acids in this reaction substantially extends its applicability and leads to structurally diverse allylic ester products. This work represents the advance in the key elementary reaction of intermolecular enantioselective construction of C-O bond on open-chain hydrocarbon radicals and may lead to the discovery of other asymmetric radical reactions. Stereocontrol of C–O bond formation from a carbon-based radical is very difficult due to the rapid inversion of the carbon radical. Here the authors present a method to form chiral esters from conjugated dienes with copper and chiral PyBox ligands, likely proceeding via an allylic radical.
SUBMITTER: Zhu X
PROVIDER: S-EPMC8602303 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA