Unknown

Dataset Information

0

DTFLOW: Inference and Visualization of Single-cell Pseudotime Trajectory Using Diffusion Propagation.


ABSTRACT: One of the major challenges in single-cell data analysis is the determination of cellular developmental trajectories using single-cell data. Although substantial studies have been conducted in recent years, more effective methods are still strongly needed to infer the developmental processes accurately. This work devises a new method, named DTFLOW, for determining the pseudo-temporal trajectories with multiple branches. DTFLOW consists of two major steps: a new method called Bhattacharyya kernel feature decomposition (BKFD) to reduce the data dimensions, and a novel approach named Reverse Searching on k-nearest neighbor graph (RSKG) to identify the multi-branching processes of cellular differentiation. In BKFD, we first establish a stationary distribution for each cell to represent the transition of cellular developmental states based on the random walk with restart algorithm, and then propose a new distance metric for calculating pseudotime of single cells by introducing the Bhattacharyya kernel matrix. The effectiveness of DTFLOW is rigorously examined by using four single-cell datasets. We compare the efficiency of DTFLOW with the published state-of-the-art methods. Simulation results suggest that DTFLOW has superior accuracy and strong robustness properties for constructing pseudotime trajectories. The Python source code of DTFLOW can be freely accessed at https://github.com/statway/DTFLOW.

SUBMITTER: Wei J 

PROVIDER: S-EPMC8602766 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8425418 | biostudies-literature
| S-EPMC6007078 | biostudies-literature
| S-EPMC6298060 | biostudies-literature
| S-EPMC7505465 | biostudies-literature
| S-EPMC7671373 | biostudies-literature
| S-EPMC8202408 | biostudies-literature
| S-EPMC8452770 | biostudies-literature
| S-EPMC5039927 | biostudies-literature
| S-EPMC9264648 | biostudies-literature
| S-EPMC8082818 | biostudies-literature