Project description:The Glucose-Insulin-Glucagon nonlinear model accurately describes how the body responds to exogenously supplied insulin and glucagon in patients affected by Type I diabetes. Based on this model, we design infusion rates of either insulin (monotherapy) or insulin and glucagon (dual therapy) that can optimally maintain the blood glucose level within desired limits after consumption of a meal and prevent the onset of both hypoglycemia and hyperglycemia. This problem is formulated as a nonlinear optimal control problem, which we solve using the numerical optimal control package [Formula: see text]. Interestingly, in the case of monotherapy, we find the optimal solution is close to the standard method of insulin based glucose regulation, which is to assume a variable amount of insulin half an hour before each meal. We also find that the optimal dual therapy (that uses both insulin and glucagon) is better able to regulate glucose as compared to using insulin alone. We also propose an ad-hoc rule for both the dosage and the time of delivery of insulin and glucagon.
Project description:Despite a rapidly growing literature, the role played by the brain in both normal glucose homeostasis and in type 2 diabetes pathogenesis remains poorly understood. In this review, we introduce a framework for understanding the brain's essential role in these processes based on evidence that the brain, like the pancreas, is equipped to sense and respond to changes in the circulating glucose level. Further, we review evidence that glucose sensing by the brain plays a fundamental role in establishing the defended level of blood glucose, and that defects in this control system contribute to type 2 diabetes pathogenesis. We also consider the possibility that the close association between obesity and type 2 diabetes arises from a shared defect in the highly integrated neurocircuitry governing energy homeostasis and glucose homeostasis. Thus, whereas obesity is characterised by an increase in the defended level of the body's fuel stores (e.g. adipose mass), type 2 diabetes is characterised by an increase in the defended level of the body's available fuel (e.g. circulating glucose), with the underlying pathogenesis in each case involving impaired sensing of (or responsiveness to) relevant humoral negative feedback signals. This perspective is strengthened by growing preclinical evidence that in type 2 diabetes the defended level of blood glucose can be restored to normal by therapies that restore the brain's ability to properly sense the circulating glucose level. Graphical abstract.
Project description:Reduced pancreatic islet levels of Munc18a/SNARE complex proteins have been postulated to contribute to the deficient glucose-stimulated insulin secretion (GSIS) in type-2 diabetes (T2D). Whereas much previous work has purported Munc18a/SNARE complex (Syntaxin-1A/VAMP-2/SNAP25) to be primarily involved in predocked secretory granule (SG) fusion, less is known about newcomer SGs that undergo minimal docking time at the plasma membrane before fusion. Newcomer SG fusion has been postulated to involve a distinct SM/SNARE complex (Munc18b/Syntaxin-3/VAMP8/SNAP25), whose levels we find also reduced in islets of T2D humans and T2D Goto-Kakizaki (GK) rats. Munc18b overexpression by adenovirus infection (Ad-Munc18b), by increasing assembly of Munc18b/SNARE complexes, mediated increased fusion of not only newcomer SGs but also predocked SGs in T2D human and GK rat islets, resulting in rescue of the deficient biphasic GSIS. Infusion of Ad-Munc18b into GK rat pancreas led to sustained improvement in glucose homeostasis. However, Munc18b overexpression in normal islets increased only newcomer SG fusion. Therefore, Munc18b could potentially be deployed in human T2D to rescue the deficient GSIS.
Project description:Previous literature indicates that pre-diagnostic diabetes and blood glucose levels are inversely related to glioma risk. To replicate these findings and determine whether they could be attributed to excess glucose consumption by the preclinical tumour, we used data from the Apolipoprotein MOrtality RISk (AMORIS) (n = 528,580) and the Metabolic syndrome and Cancer project (Me-Can) cohorts (n = 269,365). We identified individuals who were followed for a maximum of 15 years after their first blood glucose test until glioma diagnosis, death, emigration or the end of follow-up. Hazard ratios (HRs), 95% confidence intervals (CIs) and their interactions with time were estimated using Cox time-dependent regression. As expected, pre-diagnostic blood glucose levels were inversely related to glioma risk (AMORIS, P trend = 0.002; Me-Can, P trend = 0.04) and pre-diagnostic diabetes (AMORIS, HR = 0.30, 95% CI 0.17 to 0.53). During the year before diagnosis, blood glucose was inversely associated with glioma in the AMORIS (HR = 0.78, 95% CI 0.66 to 0.93) but not the Me-Can cohort (HR = 0.99, 95% CI 0.63 to 1.56). This AMORIS result is consistent with our hypothesis that excess glucose consumption by the preclinical tumour accounts for the inverse association between blood glucose and glioma. We discuss additional hypothetical mechanisms that may explain our paradoxical findings.
Project description:OBJECTIVE:In this study, we sought to determine whether postprandial insulin secretion, insulin action, glucose effectiveness, and glucose turnover were abnormal in type 2 diabetes. RESEARCH DESIGN AND METHODS:Fourteen subjects with type 2 diabetes and 11 nondiabetic subjects matched for age, weight, and BMI underwent a mixed-meal test using the triple-tracer technique. Indexes of insulin secretion, insulin action, and glucose effectiveness were assessed using the oral "minimal" and C-peptide models. RESULTS:Fasting and postprandial glucose concentrations were higher in the diabetic than nondiabetic subjects. Although peak insulin secretion was delayed (P < 0.001) and lower (P < 0.05) in type 2 diabetes, the integrated total postprandial insulin response did not differ between groups. Insulin action, insulin secretion, disposition indexes, and glucose effectiveness all were lower (P < 0.05) in diabetic than in nondiabetic subjects. Whereas the rate of meal glucose appearance did not differ between groups, the percent suppression of endogenous glucose production (EGP) was slightly delayed and the increment in glucose disappearance was substantially lower (P < 0.01) in diabetic subjects during the first 3 h after meal ingestion. Together, these defects resulted in an excessive rise in postprandial glucose concentrations in the diabetic subjects. CONCLUSIONS:When measured using methods that avoid non-steady-state error, the rate of appearance of ingested glucose was normal and suppression of EGP was only minimally impaired. However, when considered in light of the prevailing glucose concentration, both were abnormal. In contrast, rates of postprandial glucose disappearance were substantially decreased due to defects in insulin secretion, insulin action, and glucose effectiveness.
Project description:Stress may negatively impact self-management of diabetes and thereby deteriorate glycaemic control. Eating is the most frequently reported stress-release method. In this study, we investigated the association between perceived stress (PS), dietary adherence, and glycaemic control. Data from participants in the FinnDiane Study with type 1 diabetes who had completed a diet questionnaire and Cohen's perceived stress scale (PSS) were included. In addition to using a continuous PSS score, participants were divided into three groups based on the PSS scores: the first PSS quartile, low levels of PS; second and third quartiles, moderate levels of PS; and fourth quartile, high levels of PS. A diet score reflecting the level of adherence to dietary recommendations was calculated. Analyses were conducted in the whole sample and in subgroups divided by body mass index (BMI < 25 kg/m2 vs. BMI ≥ 25 kg/m2). In the whole sample, high PS and continuous stress score were negatively associated with the diet score and with adherence to fish, fresh vegetable, low-fat liquid milk product, and vegetable oil-based cooking fat recommendations. The stress score was negatively associated with the diet score both in lean and in those overweight or obese. However, fish and fresh vegetable recommendations were only affected in those with corpulence. PS was not associated with mean blood glucose concentrations in the whole sample. When divided by BMI status, worse glycaemic control was observed in lean subjects reporting stress. In individuals with overweight or obesity, instead, high glucose concentrations were observed regardless of the level of perceived stress. Interventions to improve stress management could improve dietary adherence and glycaemic control and could thereby have the potential to improve long-term health and well-being of individuals with type 1 diabetes.
Project description:OBJECTIVE:Zinc ions are essential for the formation of hexameric insulin and hormone crystallization. A nonsynonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. We describe the effects of deleting the ZnT8 gene in mice and explore the action of the at-risk allele. RESEARCH DESIGN AND METHODS:Slc30a8 null mice were generated and backcrossed at least twice onto a C57BL/6J background. Glucose and insulin tolerance were measured by intraperitoneal injection or euglycemic clamp, respectively. Insulin secretion, electrophysiology, imaging, and the generation of adenoviruses encoding the low- (W325) or elevated- (R325) risk ZnT8 alleles were undertaken using standard protocols. RESULTS:ZnT8(-/-) mice displayed age-, sex-, and diet-dependent abnormalities in glucose tolerance, insulin secretion, and body weight. Islets isolated from null mice had reduced granule zinc content and showed age-dependent changes in granule morphology, with markedly fewer dense cores but more rod-like crystals. Glucose-stimulated insulin secretion, granule fusion, and insulin crystal dissolution, assessed by total internal reflection fluorescence microscopy, were unchanged or enhanced in ZnT8(-/-) islets. Insulin processing was normal. Molecular modeling revealed that residue-325 was located at the interface between ZnT8 monomers. Correspondingly, the R325 variant displayed lower apparent Zn(2+) transport activity than W325 ZnT8 by fluorescence-based assay. CONCLUSIONS:ZnT8 is required for normal insulin crystallization and insulin release in vivo but not, remarkably, in vitro. Defects in the former processes in carriers of the R allele may increase type 2 diabetes risks.
Project description:The causal nature of associations between circulating triglycerides, insulin resistance, and type 2 diabetes is unclear. We aimed to use Mendelian randomization to test the hypothesis that raised circulating triglyceride levels causally influence the risk of type 2 diabetes and raise normal fasting glucose levels and hepatic insulin resistance.We tested 10 common genetic variants robustly associated with circulating triglyceride levels against the type 2 diabetes status in 5,637 case and 6,860 control subjects and four continuous outcomes (reflecting glycemia and hepatic insulin resistance) in 8,271 nondiabetic individuals from four studies.Individuals carrying greater numbers of triglyceride-raising alleles had increased circulating triglyceride levels (SD 0.59 [95% CI 0.52-0.65] difference between the 20% of individuals with the most alleles and the 20% with the fewest alleles). There was no evidence that the carriers of greater numbers of triglyceride-raising alleles were at increased risk of type 2 diabetes (per weighted allele odds ratio [OR] 0.99 [95% CI 0.97-1.01]; P = 0.26). In nondiabetic individuals, there was no evidence that carriers of greater numbers of triglyceride-raising alleles had increased fasting insulin levels (SD 0.00 per weighted allele [95% CI -0.01 to 0.02]; P = 0.72) or increased fasting glucose levels (0.00 [-0.01 to 0.01]; P = 0.88). Instrumental variable analyses confirmed that genetically raised circulating triglyceride levels were not associated with increased diabetes risk, fasting glucose, or fasting insulin and, for diabetes, showed a trend toward a protective association (OR per 1-SD increase in log(10) triglycerides: 0.61 [95% CI 0.45-0.83]; P = 0.002).Genetically raised circulating triglyceride levels do not increase the risk of type 2 diabetes or raise fasting glucose or fasting insulin levels in nondiabetic individuals. One explanation for our results is that raised circulating triglycerides are predominantly secondary to the diabetes disease process rather than causal.
Project description:IntroductionPublished evaluations of sensor glucose monitoring use in insulin treated type 2 diabetes are limited. The aim of this study was to assess the impact of flash glucose-sensing technology as a replacement for self-monitoring of blood glucose (SMBG) over a 12-month period in participants with type 2 diabetes who were on intensive insulin therapy.MethodsAn open-label, randomized, controlled study in adults with type 2 diabetes on intensive insulin therapy from 26 European diabetes centers aimed at assessing flash glucose sensing technology was conducted. Participants (N = 224) were randomized (1:2 respectively) to a control group (n = 75) that used SMBG (FreeStyle Lite™) or to an intervention group (n = 149) which used sensor glucose data (FreeStyle Libre™ Flash Glucose Monitoring System) for self-management over 6 months. All intervention group participants who completed the 6-month treatment phase continued into an additional 6-month open-access phase.ResultsA total of 139 intervention participants completed the 6-month treatment phase and continued into the open-access phase. At 12 months (end of open-access period), time in hypoglycemia [sensor glucose <3.9 mmol/L (70 mg/dL)] was reduced by 50% compared to baseline [-0.70 ± 1.85/24 h (mean ± standard deviation); p = 0.0002]. Nocturnal hypoglycemia [2300 to 0600 hours, <3.9 mmol/L (70 mg/dL)] was reduced by 52%; p = 0.0002. There was no change in time in range [sensor glucose 3.9-10.0 mmol/L (70-180 mg/dL)]. SMBG testing fell from a mean of 3.9 (median 3.9) times/day at baseline to 0.2 (0.0), with an average frequency of sensor scanning of 7.1 (5.7) times/day at 12 months, and mean sensor utilization was 83.6 ± 13.8% (median 88.3%) during the open-access phase. During this 6-month extension period no device-related serious adverse events were reported. Nine participants reported 16 instances of device-related adverse events (e.g. infection, allergy) and 28 participants (20.1%) experienced 134 occurrences of anticipated skin symptoms/sensor-insertion events expected with device use (e.g. erythema, itching and rash).ConclusionThe use of flash glucose-sensing technology for glycemic management in individuals with type 2 diabetes treated by intensive insulin therapy over 12 months was associated with a sustained reduction in hypoglycemia and safely and effectively replaced SMBG.Trial registrationClinicalTrials.gov identifier, NCT02082184.
Project description:INTRODUCTION:We examined differences in hypoglycaemia risk between insulin glargine 300 U/mL (Gla-300) and insulin glargine 100 U/mL (Gla-100) in individuals with type 2 diabetes (T2DM) using the low blood glucose index (LBGI). METHODS:Daily profiles of self-monitored plasma glucose (SMPG) from the EDITION 2, EDITION 3 and SENIOR treat-to-target trials of Gla-300 versus Gla-100 were used to compute the LBGI, which is an established metric of hypoglycaemia risk. The analysis also examined documented (blood glucose readings < 3.0 mmol/L [54 mg/dL]) symptomatic hypoglycaemia (DSH). RESULTS:Overall LBGI in EDITION 2 and SENIOR and night-time LBGI in all three trials were significantly (p < 0.05) lower with Gla-300 versus Gla-100. The largest differences between Gla-300 and Gla-100 were observed during the night. In all three trials, individual LBGI results correlated with the observed number of DSH episodes per participant (EDITION 2 [r = 0.35, p < 0.001]; EDITION 3 [r = 0.26, p < 0.001]; SENIOR [r = 0.30, p < 0.001]). Participants at moderate risk of experiencing hypoglycaemia (defined as LBGI > 1.1) reported 4- to 8-fold more frequent DSH events than those at minimal risk (LBGI ≤ 1.1) (p ≤ 0.009). CONCLUSIONS:The LBGI identified individuals with T2DM at risk for hypoglycaemia using SMPG data and correlated with the number of DSH events. Using the LBGI metric, a lower risk of hypoglycaemia with Gla-300 than Gla-100 was observed in all three trials. The finding that differences in LBGI are greater at night is consistent with previously published differences in the pharmacokinetic profiles of Gla-300 and Gla-100, which provides the physiological foundation for the presented results.