Project description:The 26S proteasome, a master player in proteolysis, is the most complex and meticulously contextured protease in eukaryotic cells. While capable of hosting thousands of discrete substrates due to the selective recognition of ubiquitin tags, this protease complex is also dynamically checked through diverse regulatory mechanisms. The proteasome's versatility ensures precise control over active proteolysis, yet prevents runaway or futile degradation of many essential cellular proteins. Among the multi-layered processes regulating the proteasome's proteolysis, deubiquitination reactions are prominent because they not only recycle ubiquitins, but also impose a critical checkpoint for substrate degradation on the proteasome. Of note, three distinct classes of deubiquitinating enzymes-USP14, RPN11, and UCH37-are associated with the 19S subunits of the human proteasome. Recent biochemical and structural studies suggest that these enzymes exert dynamic influence over proteasome output with limited redundancy, and at times act in opposition. Such distinct activities occur spatially on the proteasome, temporally through substrate processing, and differentially for ubiquitin topology. Therefore, deubiquitinating enzymes on the proteasome may fine-tune the degradation depending on various cellular contexts and for dynamic proteolysis outcomes. Given that the proteasome is among the most important drug targets, the biology of proteasome-associated deubiquitination should be further elucidated for its potential targeting in human diseases.
Project description:The innate immune response is a host defense mechanism that induces type I interferon and proinflammatory cytokines. Tripartite motif (TRIM) family proteins have recently emerged as pivotal regulators of type I interferon production in mammals. Here, we first identified duck TRIM29, which encodes 571 amino acids and shows high sequence homology with other bird TRIM29 proteins. DuTRIM29 inhibited IFN-β and IRF7 promoter activation in a dose-dependent manner and downregulated the mRNA expression of IFN-β, IRF7, Mx and IL-6 mediated by duRIG-I. Moreover, duTRIM29 interacted and colocalized with duMAVS in the cytoplasm. DuTRIM29 interacted with duMAVS via its C-terminal domains. In addition, duTRIM29 inhibited IFN-β and IRF7 promoter activation and significantly downregulated IFN-β and immune-related gene expression mediated by duMAVS in ducks. Furthermore, duTRIM29 induced K29-linked polyubiquitination and degradation of duMAVS to suppress the expression of IFN-β. Overall, our results demonstrate that duTRIM29 negatively regulates type I IFN production by targeting duMAVS in ducks. This study will contribute to a better understanding of the molecular mechanism regulating the innate immune response by TRIM proteins in ducks.
Project description:Autosomal recessive mutations in proteasome subunit ? 8 (PSMB8), which encodes the inducible proteasome subunit ?5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes ?7), PSMB4 (encodes ?7), PSMB9 (encodes ?1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production.
Project description:Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with various aggregation diseases. In eukaryotes, the ubiquitin proteasome system (UPS) plays a vital role in protein quality control (PQC), by selectively targeting misfolded proteins for degradation. While the assembly of the proteasome can be naturally impaired by many factors, the regulatory pathways that mediate the sorting and elimination of misassembled proteasomal subunits are poorly understood. Here, we reveal how the dysfunctional proteasome is controlled by the PQC machinery. We found that among the multilayered quality control mechanisms, UPS mediated degradation of its own misassembled subunits is the favored pathway. We also demonstrated that the Hsp42 chaperone mediates an alternative pathway, the accumulation of these subunits in cytoprotective compartments. Thus, we show that proteasome homeostasis is controlled through probing the level of proteasome assembly, and the interplay between UPS mediated degradation or their sorting into distinct cellular compartments.
Project description:The innate immunity is critically important in protection against virus infections, and in the case of RNA viral infections, the signaling mechanisms that initiate robust protective innate immunity without triggering autoimmune inflammation remain incompletely defined. In this study, we found the E3 ligase TRIM29 was specifically expressed in poly I:C-stimulated human myeloid dendritic cells. The induced TRIM29 played a negative role in type I IFN production in response to poly I:C or dsRNA virus reovirus infection. Importantly, the challenge of wild-type mice with reovirus led to lethal infection. In contrast, deletion of TRIM29 protected the mice from this developing lethality. Additionally, TRIM29-/- mice have lower titers of reovirus in the heart, intestine, spleen, liver, and brain because of elevated production of type I IFN. Mechanistically, TRIM29 was shown to interact with MAVS and subsequently induce its K11-linked ubiquitination and degradation. Taken together, TRIM29 regulates negatively the host innate immune response to RNA virus, which could be employed by RNA viruses for viral pathogenesis.
Project description:Immunomodulatory drugs (IMiDs) are a family of compounds derived from thalidomide. Binding of the IMiD molecule to the Lon protease Cereblon initiates the degradation of substrates via the ubiquitin proteasome pathway. Here, we show that Cereblon forms a complex with Rabex-5, a regulator of immune homeostasis. Treatment with lenalidomide prevented the association of Cereblon with Rabex-5. Conversely, mutation of the IMiD binding site increased Cereblon-Rabex-5 coimmunoprecipitation. The thalidomide binding region of Cereblon therefore regulates the formation of this complex. Knockdown of Rabex-5 in the THP-1 macrophage cell line up-regulated Toll-like receptor (TLR)-induced cytokine and type 1 IFN production via a STAT1/IRF activating pathway. Thus, we identify Rabex-5 as a IMiD target molecule that functions to restrain TLR activated auto-immune promoting pathways. We propose that release of Rabex-5 from complex with Cereblon enables the suppression of immune responses, contributing to the antiinflammatory properties of IMiDs.
Project description:Linear ubiquitination plays an important role in the regulation of the immune response by regulating nuclear factor κB (NF-κB). The linear ubiquitination-specific deubiquitinase ovarian tumor domain deubiquitinase with linear linkage specificity (OTULIN) can control the immune signaling transduction pathway by restricting the Met1-linked ubiquitination process. In our study, the porcine OTLLIN gene was cloned and deubiquitin functions were detected in a porcine reproductive and respiratory syndrome virus (PRRSV)-infected-cell model. PRRSV infection promotes the expression of the OTULIN gene; in turn, overexpression of OTULIN contributes to PRRSV proliferation. There is negative regulation of innate immunity with OTULIN during viral infection. The cooperative effects of swine OTULIN and PRRSV Nsp11 potentiate the ability to reduce levels of cellular protein ubiquitin associated with innate immunity. Importantly, PRRSV Nsp11 recruits OTULIN through a nonenzymatic combination to enhance its ability to remove linear ubiquitination targeting NEMO, resulting in a superimposed effect that inhibits the production of type I interferons (IFNs). Our report presents a new model of virus utilization of the ubiquitin-protease system in vivo from the perspective of the viral proteins that interact with cell deubiquitination enzymes, providing new ideas for prevention and control of PRRSV.IMPORTANCE Deubiquitination effects of swine OTULIN were identified. The interaction between porcine OTULIN and PRRSV Nsp11 is dependent on the OTU domain. PRRSV Nsp11 recruits OTULIN through a nonenzymatic combination to promote removal of linear ubiquitination targeting NEMO, resulting in a superimposed effect that inhibits the production of type I IFNs.
Project description:Type I interferons (IFN), a family of cytokines widely expressed in various tissues, play important roles in anti-infection immunity. Nevertheless, it is not known whether Brucella spp. could interfere with IFN-I production induced by other pathogens. This study investigated the regulatory roles of Brucella outer membrane protein (Omp)25 on the IFN-I signaling pathway and found that Omp25 inhibited the production of IFN-β and its downstream IFN-stimulated genes induced by various DNA viruses or IFN-stimulatory DNA in human, murine, porcine, bovine, and ovine monocyte/macrophages or peripheral blood mononuclear cells. Brucella Omp25 suppressed the phosphorylation of stimulator of IFN genes (STINGs) and IFN regulatory factor 3 and nuclear translocation of phosphorylated IFN regulatory factor 3 in pseudorabies virus- or herpes simplex virus-1-infected murine, human, or porcine macrophages. Furthermore, we found that Brucella Omp25 promoted cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) degradation via the proteasome-dependent pathway, resulting in a decreased cyclic guanosine monophosphate-adenosine monophosphate production and downstream signaling activation upon DNA virus infection or IFN-stimulatory DNA stimulation. Mapping the predominant function domain of Omp25 showed that the amino acids 161 to 184 of Omp25 were required for Omp25-induced cGAS degradation, among which five amino acid residues (R176, Y179, R180, Y181, and Y184) were required for the inhibitory effect of Omp25 on IFN-β induction. Altogether, our results demonstrated that Brucella Omp25 inhibits cGAS STING signaling pathway-induced IFN-β via facilitating the ubiquitin-proteasome-dependent degradation of cGAS in various mammalian monocyte/macrophages.
Project description:We generated eight multiple myeloma cell lines resistant to bortezomib; five acquired PSMB5 mutations. In 1,500 patients such mutations were rare clinically. To better understand disruption of proteasomes on multiple myeloma viability and drug sensitivity, we systematically deleted the major proteasome catalytic subunits. Multiple myeloma cells without PSMB5 were viable. Drug-resistant, PSMB5-mutated cell lines were resensitized to bortezomib by PSMB5 deletion, implying PSMB5 mutation is activating in its drug resistance function. In contrast, PSMB6 knockout was lethal to multiple myeloma cell lines. Depleting PSMB6 prevented splicing of the major catalytic subunits PSMB5, PSMB7, PSMB8, and PSMB10; however, PSMB6 engineered without splicing function or catalytic activity, also restored viability, inferring the contribution of PSMB6 to proteasome structure to be more important than functional activity. Supporting this, bortezomib sensitivity was restored in drug-resistant multiple myeloma cell lines by low level expression of mutated PSMB6 lacking splicing function. Loss of PSMB8 and PSMB9 was neither lethal nor restored bortezomib sensitivity. Significant codependency of PSMB5, PSMB6, and PSMB7 expression was observed. We demonstrated elevated levels of PSMB6 and 7, but not 8 and 9, in some, but not all, serial patient samples exposed to proteasome inhibitors. In summary, we show PSMB6 and PSMB7, but not PSMB5, to be essential for multiple myeloma cell survival, this dependency is structural and that upregulation or activating mutation of PSMB5, 6, and 7 confers proteasome inhibitor resistance, while depletion confers sensitivity. IMPLICATIONS: These findings support modulation of PSMB5, PSMB6, or PSMB7 expression as a new therapeutic strategy.
Project description:NF-?B signaling regulates diverse processes such as cell death, inflammation, immunity, and cancer. The activity of NF-?B is controlled by methionine 1-linked linear polyubiquitin, which is assembled by the linear ubiquitin chain assembly complex (LUBAC) and the ubiquitin-conjugating enzyme UBE2L3. Recent studies found that the deubiquitinase OTULIN breaks the linear ubiquitin chain, thus inhibiting NF-?B signaling. Despite the essential role of OTULIN in NF-?B signaling has been established, the regulatory mechanism for OTULIN is not well elucidated. To discover the potential regulators of OTULIN, we analyzed the OTULIN protein complex by proteomics and revealed several OTULIN-binding proteins, including LUBAC and tripartite motif-containing protein 32 (TRIM32). TRIM32 is known to activate NF-?B signaling, but the mechanism is not clear. Genetic complement experiments found that TRIM32 is upstream of OTULIN and TRIM32-mediated NF-?B activation is dependent on OTULIN. Mutagenesis of the E3 ligase domain showed that the E3 ligase activity is essential for TRIM32-mediated NF-?B activation. Further experiments found that TRIM32 conjugates polyubiquitin onto OTULIN and the polyubiquitin blocks the interaction between HOIP and OTULIN, thereby activating NF-?B signaling. Taken together, we report a novel regulatory mechanism by which TRIM32-mediated non-proteolytic ubiquitination of OTULIN impedes the access of OTULIN to the LUBAC and promotes NF-?B activation.