Unknown

Dataset Information

0

Pathway dynamics can delineate the sources of transcriptional noise in gene expression.


ABSTRACT: Single-cell expression profiling opens up new vistas on cellular processes. Extensive cell-to-cell variability at the transcriptomic and proteomic level has been one of the stand-out observations. Because most experimental analyses are destructive we only have access to snapshot data of cellular states. This loss of temporal information presents significant challenges for inferring dynamics, as well as causes of cell-to-cell variability. In particular, we typically cannot separate dynamic variability from within cells ('intrinsic noise') from variability across the population ('extrinsic noise'). Here we make this non-identifiability mathematically precise, allowing us to identify new experimental set-ups that can assist in resolving this non-identifiability. We show that multiple generic reporters from the same biochemical pathways (e.g. mRNA and protein) can infer magnitudes of intrinsic and extrinsic transcriptional noise, identifying sources of heterogeneity. Stochastic simulations support our theory, and demonstrate that 'pathway-reporters' compare favourably to the well-known, but often difficult to implement, dual-reporter method.

SUBMITTER: Ham L 

PROVIDER: S-EPMC8608387 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3435505 | biostudies-literature
| S-EPMC2278180 | biostudies-literature
| S-EPMC4223191 | biostudies-literature
| S-EPMC2716471 | biostudies-literature
| S-EPMC5654408 | biostudies-literature
| S-EPMC4759790 | biostudies-literature
| S-EPMC1855988 | biostudies-literature
| S-EPMC5484669 | biostudies-literature
| S-EPMC3431296 | biostudies-literature
| S-EPMC3269440 | biostudies-literature