Development and validation of a prediction model for estimating one-month mortality of adult COVID-19 patients presenting at emergency department with suspected pneumonia: a multicenter analysis
Ontology highlight
ABSTRACT: There are only a few models developed for risk-stratifying COVID-19 patients with suspected pneumonia in the emergency department (ED). We aimed to develop and validate a model, the COVID-19 ED pneumonia mortality index (CoV-ED-PMI), for predicting mortality in this population. We retrospectively included adult COVID-19 patients who visited EDs of five study hospitals in Texas and who were diagnosed with suspected pneumonia between March and November 2020. The primary outcome was 1-month mortality after the index ED visit. In the derivation cohort, multivariable logistic regression was used to develop the CoV-ED-PMI model. In the chronologically split validation cohort, the discriminative performance of the CoV-ED-PMI was assessed by the area under the receiver operating characteristic curve (AUC) and compared with other existing models. A total of 1678 adult ED records were included for analysis. Of them, 180 patients sustained 1-month mortality. There were 1174 and 504 patients in the derivation and validation cohorts, respectively. Age, body mass index, chronic kidney disease, congestive heart failure, hepatitis, history of transplant, neutrophil-to-lymphocyte ratio, lactate dehydrogenase, and national early warning score were included in the CoV-ED-PMI. The model was validated with good discriminative performance (AUC: 0.83, 95% confidence interval [CI]: 0.79–0.87), which was significantly better than the CURB-65 (AUC: 0.74, 95% CI: 0.69–0.79, p-value: < 0.001). The CoV-ED-PMI had a good predictive performance for 1-month mortality in COVID-19 patients with suspected pneumonia presenting at ED. This free tool is accessible online, and could be useful for clinical decision-making in the ED. Supplementary Information
The online version contains supplementary material available at 10.1007/s11739-021-02882-x.
SUBMITTER: Chou E
PROVIDER: S-EPMC8609507 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA