Unknown

Dataset Information

0

Sensitivity analysis of a reduced model of thrombosis under flow: Roles of Factor IX, Factor XI, and γ‘-Fibrin


ABSTRACT: A highly reduced extrinsic pathway coagulation model (8 ODEs) under flow considered a thin 15-micron platelet layer where transport limitations were largely negligible (except for fibrinogen) and where cofactors (FVIIa, FV, FVIII) were not rate-limiting. By including thrombin feedback activation of FXI and the antithrombin-I activities of fibrin, the model accurately simulated measured fibrin formation and thrombin fluxes. Using this reduced model, we conducted 10,000 Monte Carlo (MC) simulations for ±50% variation of 5 plasma zymogens and 2 fibrin binding sites for thrombin. A sensitivity analysis of zymogen concentrations indicated that FIX activity most influenced thrombin generation, a result expected from hemophilia A and B. Averaging all MC simulations confirmed both the mean and standard deviation of measured fibrin generation on 1 tissue factor (TF) molecule per μm2. Across all simulations, free thrombin in the layer ranged from 20 to 300 nM (mean: 50 nM). The top 2% of simulations that produced maximal fibrin were dominated by conditions with low antithrombin-I activity (decreased weak and strong sites) and high FIX concentration. In contrast, the bottom 2% of simulations that produced minimal fibrin were dominated by low FIX and FX. The percent reduction of fibrin by an ideal FXIa inhibitor (FXI = 0) ranged from 71% fibrin reduction in the top 2% of MC simulations to only 34% fibrin reduction in the bottom 2% of MC simulations. Thus, the antithrombotic potency of FXIa inhibitors may vary depending on normal ranges of zymogen concentrations. This reduced model allowed efficient multivariable sensitivity analysis.

SUBMITTER: Chen J 

PROVIDER: S-EPMC8610249 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7826336 | biostudies-literature
| S-EPMC6960463 | biostudies-literature
| S-EPMC4367537 | biostudies-literature
| S-EPMC2675682 | biostudies-literature
| S-EPMC7453153 | biostudies-literature
| S-EPMC7515655 | biostudies-literature
| S-EPMC5398924 | biostudies-other
| S-EPMC6916417 | biostudies-literature
| S-EPMC3947433 | biostudies-literature
| S-EPMC2882282 | biostudies-other