Unknown

Dataset Information

0

Analysis of subunit folding contribution of three yeast large ribosomal subunit proteins required for stabilisation and processing of intermediate nuclear rRNA precursors.


ABSTRACT: In yeast and human cells many of the ribosomal proteins (r-proteins) are required for the stabilisation and productive processing of rRNA precursors. Functional coupling of r-protein assembly with the stabilisation and maturation of subunit precursors potentially promotes the production of ribosomes with defined composition. To further decipher mechanisms of such an intrinsic quality control pathway we analysed here the contribution of three yeast large ribosomal subunit r-proteins rpL2 (uL2), rpL25 (uL23) and rpL34 (eL34) for intermediate nuclear subunit folding steps. Structure models obtained from single particle cryo-electron microscopy analyses provided evidence for specific and hierarchic effects on the stable positioning and remodelling of large ribosomal subunit domains. Based on these structural and previous biochemical data we discuss possible mechanisms of r-protein dependent hierarchic domain arrangement and the resulting impact on the stability of misassembled subunits.

SUBMITTER: Poll G 

PROVIDER: S-EPMC8610266 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Analysis of subunit folding contribution of three yeast large ribosomal subunit proteins required for stabilisation and processing of intermediate nuclear rRNA precursors.

Pöll Gisela G   Pilsl Michael M   Griesenbeck Joachim J   Tschochner Herbert H   Milkereit Philipp P  

PloS one 20211123 11


In yeast and human cells many of the ribosomal proteins (r-proteins) are required for the stabilisation and productive processing of rRNA precursors. Functional coupling of r-protein assembly with the stabilisation and maturation of subunit precursors potentially promotes the production of ribosomes with defined composition. To further decipher mechanisms of such an intrinsic quality control pathway we analysed here the contribution of three yeast large ribosomal subunit r-proteins rpL2 (uL2), r  ...[more]

Similar Datasets

| S-EPMC10062582 | biostudies-literature
| S-EPMC10623804 | biostudies-literature
| S-EPMC4671574 | biostudies-literature
2023-11-07 | GSE232067 | GEO
| S-EPMC2856670 | biostudies-literature
| S-EPMC2788216 | biostudies-literature
| S-EPMC6336269 | biostudies-literature
| S-EPMC7641309 | biostudies-literature
| S-EPMC10369890 | biostudies-literature
| S-EPMC10695388 | biostudies-literature