Unknown

Dataset Information

0

Real-time deep artifact suppression using recurrent U-Nets for low-latency cardiac MRI.


ABSTRACT:

Purpose

Real-time low latency MRI is performed to guide various cardiac interventions. Real-time acquisitions often require iterative image reconstruction strategies, which lead to long reconstruction times. In this study, we aim to reconstruct highly undersampled radial real-time data with low latency using deep learning.

Methods

A 2D U-Net with convolutional long short-term memory layers is proposed to exploit spatial and preceding temporal information to reconstruct highly accelerated tiny golden radial data with low latency. The network was trained using a dataset of breath-hold CINE data (including 770 time series from 7 different orientations). Synthetic paired data were created by retrospectively undersampling the magnitude images, and the network was trained to recover the target images. In the spirit of interventional imaging, the network was trained and tested for varying acceleration rates and orientations. Data were prospectively acquired and reconstructed in real time in 1 healthy subject interactively and in 3 patients who underwent catheterization. Images were visually compared to sliding window and compressed sensing reconstructions and a conventional Cartesian real-time sequence.

Results

The proposed network generalized well to different acceleration rates and unseen orientations for all considered metrics in simulated data (less than 4% reduction in structural similarity index compared to similar acceleration and orientation-specific networks). The proposed reconstruction was demonstrated interactively, successfully depicting catheters in vivo with low latency (39 ms, including 19 ms for deep artifact suppression) and an image quality comparing favorably to other reconstructions.

Conclusion

Deep artifact suppression was successfully demonstrated in the time-critical application of non-Cartesian real-time interventional cardiac MR.

SUBMITTER: Jaubert O 

PROVIDER: S-EPMC8613539 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8376223 | biostudies-literature
| S-EPMC6492123 | biostudies-literature
| S-EPMC4865432 | biostudies-literature
| S-EPMC6590694 | biostudies-literature
| S-EPMC8140156 | biostudies-literature
| S-EPMC8295221 | biostudies-literature
| S-EPMC9835035 | biostudies-literature
| S-EPMC10716161 | biostudies-literature
| S-EPMC4637255 | biostudies-literature
| S-EPMC8145775 | biostudies-literature