Unknown

Dataset Information

0

Prediction of coffee aroma from single roasted coffee beans by hyperspectral imaging.


ABSTRACT: Coffee aroma is critical for consumer liking and enables price differentiation of coffee. This study applied hyperspectral imaging (1000-2500 nm) to predict volatile compounds in single roasted coffee beans, as measured by Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry and Gas Chromatography-Olfactometry. Partial least square (PLS) regression models were built for individual volatile compounds and chemical classes. Selected key aroma compounds were predicted well enough to allow rapid screening (R2 greater than 0.7, Ratio to Performance Deviation (RPD) greater than 1.5), and improved predictions were achieved for classes of compounds - e.g. aldehydes and pyrazines (R2 ∼ 0.8, RPD ∼ 1.9). To demonstrate the approach, beans were successfully segregated by HSI into prototype batches with different levels of pyrazines (smoky) or aldehydes (sweet). This is industrially relevant as it will provide new rapid tools for quality evaluation, opportunities to understand and minimise heterogeneity during production and roasting and ultimately provide the tools to define and achieve new coffee flavour profiles.

SUBMITTER: Caporaso N 

PROVIDER: S-EPMC8617352 | biostudies-literature | 2022 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prediction of coffee aroma from single roasted coffee beans by hyperspectral imaging.

Caporaso Nicola N   Whitworth Martin B MB   Fisk Ian D ID  

Food chemistry 20210917


Coffee aroma is critical for consumer liking and enables price differentiation of coffee. This study applied hyperspectral imaging (1000-2500 nm) to predict volatile compounds in single roasted coffee beans, as measured by Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry and Gas Chromatography-Olfactometry. Partial least square (PLS) regression models were built for individual volatile compounds and chemical classes. Selected key aroma compounds were predicted well enough to all  ...[more]

Similar Datasets

| S-EPMC7814379 | biostudies-literature
| S-EPMC7070527 | biostudies-literature
| S-EPMC7809118 | biostudies-literature
| S-EPMC5914545 | biostudies-literature
| S-EPMC9386424 | biostudies-literature
| S-EPMC10145731 | biostudies-literature
| S-EPMC10063361 | biostudies-literature
| S-EPMC6694859 | biostudies-literature
| S-EPMC9572980 | biostudies-literature
| S-EPMC5447914 | biostudies-literature