Unknown

Dataset Information

0

Network pharmacology approach to evaluate the therapeutic effects of mulberry leaf components for obesity.


ABSTRACT: Obesity is a chronic condition that has become a serious public health challenge globally due to the association with a high incidence of complications. Mulberry leaf is one of the most commonly used medicinal and herbal medicines that has been reported to ameliorate obesity and hyperlipidemia. However, the mechanism remains unclear. In the present study, a network pharmacology approach was used to explore the potential mechanism underlying the effects of mulberry leaf extract on obesity. First, the potential targets of mulberry leaf and obesity were predicted using SwissTargetPrediction, Online Mendelian Inheritance in Man, GeneCards and Comparative Toxicogenomics Database databases, which were then used to construct the protein-protein interaction networks. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyzes were performed using R version 3.6.3. Finally, results of this network analysis were verified by using the mulberry leaf extract to treat high-fat diet-induced obese mice. In total, 24 target genes associated with obesity that could potentially be affected by mulberry leaf treatment were predicted by network pharmacology, using which top seven related pathways were determined by KEGG enrichment analysis. Triglyceride (TG) and total cholesterol (TC) levels in mice serum were detected using TG and TC assay kits. Hepatic fat accumulation was detected by H&E staining whereas liver lipid droplets were detected by Oil red O staining in mice tissues. The expression of IL-1β, NF-κB inhibitor α, inducible nitric oxide synthase, AMP-activated protein kinase (AMPK), sterol regulatory element-binding proteins and fatty acid synthase in the visceral white adipose tissues of mice was analyzed by western blotting. The expression of TNF-α, peroxisome proliferator activated receptor (PPAR)D, PPARG, fatty acid amide hydrolase (FAAH) and hydroxysteroid 11-β dehydrogenase 1 (HSD11B1) in the visceral white adipose tissues of mice was detected by reverse transcription-quantitative PCR. Mulberry leaf extract was found to reduce fat accumulation and hepatic lipid droplet formation. Mulberry leaf also alleviated inflammation and lipogenesis whilst promoting lipid catabolism and fatty acid oxidation by promoting the AMPK signaling pathway. The possible anti-obesity effects of mulberry leaf on the mice may be due to the downregulation of TNF-α, PPARD and PPARG and the upregulation of FAAH and HSD11B1. These results were consistent with the GO enrichment analysis and suggested that mulberry leaf may regulate lipid metabolism and catabolism, fatty acid metabolism and biosynthesis and the inflammatory response to reduce obesity.

SUBMITTER: Wang G 

PROVIDER: S-EPMC8630443 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8782947 | biostudies-literature
| S-EPMC8160516 | biostudies-literature
| S-EPMC9328944 | biostudies-literature
| S-EPMC7565599 | biostudies-literature
| S-EPMC3547811 | biostudies-literature
| S-EPMC8263261 | biostudies-literature
| S-EPMC8363445 | biostudies-literature
| S-EPMC9259182 | biostudies-literature
| S-EPMC9245566 | biostudies-literature
| S-EPMC7600061 | biostudies-literature