Project description:The chloride ion battery has been developed as one of the alternative battery chemistries beyond lithium ion, toward abundant material resources and high energy density. Its application, however, is limited by the dissolution of electrode materials and side reactions in the liquid electrolyte. Herein, a solid polymer electrolyte allowing chloride ion transfer and consisting of poly(ethylene oxide) as the polymer matrix, tributylmethylammonium chloride as the chloride salt, and succinonitrile as the solid plasticizer is reported. The as-prepared polymer electrolyte shows conductivities of 10-5-10-4 S cm-1 in the temperature range of 298-343 K. When it is assembled with the iron oxychloride/lithium electrode system, reversible electrochemical redox reactions of FeOCl/FeO at the cathode side and Li/LiCl at the anode side are realized, demonstrating the first all-solid-state rechargeable chloride ion battery.
Project description:A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. All-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C.
Project description:Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We have designed a solid state cell that accommodates organic cathodic reactions in solid phase. The cell was successful at achieving high capacity exceeding 200 mAh/g with excellent cycleability. Further investigations confirmed that our strategy is effective for numerous other redox-active organic compounds. This implies hundreds of compounds dismissed before due to low cycleability would worth a re-visit under solid state design.
Project description:Achieving satisfactory performance for a solid-state Na-metal battery (SSNMB) with an inorganic solid electrolyte (SE), especially under freezing temperatures, poses a challenge for stabilizing a Na-metal anode. Herein, this challenge is addressed by utilizing a Natrium super ionic conductor (NASICON) NASICON-type solid electrolyte, enabling the operation of a rechargeable SSNMB over a wide temperature range from -20 to 45 °C. The interfacial resistance at the Na metal/SE interface is only 0.4 Ω cm2 at 45 °C and remains below 110 Ω cm2 even at -20 °C. Remarkably, long-term Na-metal plating/stripping cycles lasting over 2000 h at -20 °C are achieved with minimal polarization voltages at 0.1 mA cm-2 . Further analysis reveals the formation of a uniform Na3- x Cax PO4 interphase layer at the interface, which significantly contributes to the exceptional interfacial performance observed. By employing a Na3 V1.5 Al0.5 (PO4 )3 cathode, the full battery system demonstrates excellent adaptability to low temperatures, exhibiting a capacity of 80 mA h g-1 at -20 °C over 50 cycles and retaining a capacity of 108 mAh g-1 (88.5% of the capacity at 45 °C) at 0 °C over 275 cycles. This research significantly reduces the temperature threshold for SSNMB operation and paves the way toward solid-state batteries suitable for all-season applications.
Project description:Exploration of high-performance cathode materials for rechargeable aqueous Zn ion batteries (ZIBs) is highly desirable. The potential of molybdenum trioxide (MoO3) in other electrochemical energy storage devices has been revealed but held understudied in ZIBs. Herein, a demonstration of orthorhombic MoO3 as an ultrahigh-capacity cathode material in ZIBs is presented. The energy storage mechanism of the MoO3 nanowires based on Zn2+ intercalation/deintercalation and its electrochemical instability mechanism are particularly investigated and elucidated. The severe capacity decay of the MoO3 nanowires during charging/discharging cycles arises from the dissolution and the structural collapse of MoO3 in aqueous electrolyte. To this end, an effective strategy to stabilize MoO3 nanowires by using a quasi-solid-state poly(vinyl alcohol)(PVA)/ZnCl2 gel electrolyte to replace the aqueous electrolyte is developed. The capacity retention of the assembled ZIBs after 400 charge/discharge cycles at 6.0 A g-1 is significantly boosted, from 27.1% (in aqueous electrolyte) to 70.4% (in gel electrolyte). More remarkably, the stabilized quasi-solid-state ZIBs achieve an attracting areal capacity of 2.65 mAh cm-2 and a gravimetric capacity of 241.3 mAh g-1 at 0.4 A g-1, outperforming most of recently reported ZIBs.
Project description:Rechargeable ion-batteries, in which ions such as Li(+) carry charges between electrodes, have been contributing to the improvement of power-source performance in a wide variety of mobile electronic devices. Among them, Mg-ion batteries are recently attracting attention due to possible low cost and safety, which are realized by abundant natural resources and stability of Mg in the atmosphere. However, only a few materials have been known to work as rechargeable cathodes for Mg-ion batteries, owing to strong electrostatic interaction between Mg(2+) and the host lattice. Here we demonstrate rechargeable performance of Mg-ion batteries at ambient temperature by selecting TiSe2 as a model cathode by focusing on electronic structure. Charge delocalization of electrons in a metal-ligand unit through d-p orbital hybridization is suggested as a possible key factor to realize reversible intercalation of Mg(2+) into TiSe2. The viewpoint from the electronic structure proposed in this study might pave a new way to design electrode materials for multivalent-ion batteries.
Project description:Aqueous multivalent ion batteries, especially aqueous zinc-ion batteries (ZIBs), have promising energy storage application due to their unique merits of safety, high ionic conductivity, and high gravimetric energy density. To improve their electrochemical performance, polyaniline (PANI) is often chosen to suppress cathode dissolution. Herein, this work focuses on the zinc ion storage behavior of a PANI cathode. The energy storage mechanism of PANI is associated with four types of protonated/non-protonated amine or imine. The PANI cathode achieves a high capacity of 74 mAh g-1 at 0.3 A g-1 and maintains 48.4% of its initial discharge capacity after 1000 cycles. It also demonstrates an ultrahigh diffusion coefficient of 6.25 × 10-9~7.82 × 10-8 cm-2 s-1 during discharging and 7.69 × 10-10~1.81 × 10-7 cm-2 s-1 during charging processes, which is one or two orders of magnitude higher than other reported studies. This work sheds a light on developing PANI-composited cathodes in rechargeable aqueous ZIBs energy storage devices.
Project description:Aqueous rechargeable metal batteries are intrinsically safe due to the utilization of low-cost and non-flammable water-based electrolyte solutions. However, the discharge voltages of these electrochemical energy storage systems are often limited, thus, resulting in unsatisfactory energy density. Therefore, it is of paramount importance to investigate alternative aqueous metal battery systems to improve the discharge voltage. Herein, we report reversible manganese-ion intercalation chemistry in an aqueous electrolyte solution, where inorganic and organic compounds act as positive electrode active materials for Mn2+ storage when coupled with a Mn/carbon composite negative electrode. In one case, the layered Mn0.18V2O5·nH2O inorganic cathode demonstrates fast and reversible Mn2+ insertion/extraction due to the large lattice spacing, thus, enabling adequate power performances and stable cycling behavior. In the other case, the tetrachloro-1,4-benzoquinone organic cathode molecules undergo enolization during charge/discharge processes, thus, contributing to achieving a stable cell discharge plateau at about 1.37 V. Interestingly, the low redox potential of the Mn/Mn2+ redox couple vs. standard hydrogen electrode (i.e., -1.19 V) enables the production of aqueous manganese metal cells with operational voltages higher than their zinc metal counterparts.
Project description:Self-healing and flexibility are significant for many emerging applications of secondary batteries, which have attracted broad attention. Herein, a self-healing flexible quasi-solid Zn-ion battery composing of flexible all-in-one cathode (VS2 nanosheets growing on carbon cloth) and anode (electrochemically deposited Zn nanowires), and a self-healing hydrogel electrolyte, is presented. The free-standing all-in-one electrodes enable a high capacity and robust structure during flexible transformation of the battery, and the hydrogel electrolyte possesses a good self-healing performance. The presented battery remains as a high retention potential even after healing from being cut into six pieces. When bending at 60°, 90°, and 180°, the battery capacities remain 124, 125, and 114 mAh g-1, respectively, cycling at a current density of 50 mA g-1. Moreover, after cutting and healing twice, the battery still delivers a stable capacity, indicating a potential use of self-healing and wearable electronics.
Project description:Systems for harvesting and storing solar energy have found practical applications ranging from solar farms to autonomous smart devices. Generally, these energy solutions consist of solar cells for light harvesting and rechargeable batteries to match the solar energy supply to consumption demands. Rather than having a separate energy harvesting and storing device, we report photo-rechargeable zinc-ion batteries (hν-ZIBs) using a photoactive cathode composed of layer-by-layer grown zinc oxide and molybdenum disulfide. These photocathodes are capable of harvesting solar energy and storing it in the same material and alleviate the need for solar cells or power converters. The proposed photocathodes achieve photoconversion efficiencies of ∼1.8% using a 455 nm light source and ∼0.2% of solar-conversion efficiencies. Light not only allows photocharging but also enhances the battery capacity from 245 to 340 mA h g-1 (specific current of 100 mA g-1 and 12 mW cm-2 light intensity at 455 nm). Finally, the proposed hν-ZIBs also demonstrate a capacity retention of ∼82% over 200 cycles.