Project description:When different preparations of Zymolyase were included in the pretreatment protocol of a panfungal PCR assay using a primer system for the 18S rRNA gene, an amplification product occurred in negative controls. The amplified fragment showed 100.0% sequence identity to the Saccharomyces sensu stricto complex and Kluyveromyces lodderae. Lyticase, lysing enzymes, and proteinase K appeared to be free from fungal DNA.
Project description:Cystine-stabilized peptides have great utility as they naturally block ion channels, inhibit acetylcholine receptors, or inactivate microbes. However, only a tiny fraction of these peptides has been characterized. Exploration for novel peptides most efficiently starts with the identification of candidates from genome sequence data. Unfortunately, though cystine-stabilized peptides have shared structures, they have low DNA sequence similarity, restricting the utility of BLAST and even more powerful sequence alignment-based annotation algorithms, such as PSI-BLAST and HMMER. In contrast, a supervised machine learning approach may improve discovery and function assignment of these peptides. To this end, we employed our previously described m-NGSG algorithm, which utilizes hidden signatures embedded in peptide primary sequences that define and categorize structural or functional classes of peptides. From the generalized m-NGSG framework, we derived five specific models that categorize cystine-stabilized peptide sequences into specific functional classes. When compared with PSI-BLAST, HMMER and existing function-specific models, our novel approach (named CSPred) consistently demonstrates superior performance in discovery and function-assignment. We also report an interactive version of CSPred, available through download ( https://bitbucket.org/sm_islam/cystine-stabilized-proteins/src ) or web interface (watson.ecs.baylor.edu/cspred), for the discovery of cystine-stabilized peptides of specific function from genomic datasets and for genome annotation. We fully describe, in the Availability section following the Discussion, the quick and simple usage of the CsPred website to automatically deliver function assignments for batch submissions of peptide sequences.
Project description:BACKGROUND: The rapid increase in the amount of protein and DNA sequence information available has become almost overwhelming to researchers. So much information is now accessible that high-quality, functional gene analysis and categorization has become a major goal for many laboratories. To aid in this categorization, there is a need for non-commercial software that is able to both align sequences and also calculate pairwise levels of similarity/identity. RESULTS: We have developed MatGAT (Matrix Global Alignment Tool), a simple, easy to use computer application that generates similarity/identity matrices for DNA or protein sequences without needing pre-alignment of the data. CONCLUSIONS: The advantages of this program over other software are that it is open-source freeware, can analyze a large number of sequences simultaneously, can visualize both sequence alignment and similarity/identity values concurrently, employs global alignment in calculations, and has been formatted to run under both the Unix and the Microsoft Windows Operating Systems. We are presently completing the Macintosh-based version of the program.
Project description:Background. 16S rRNA gene sequences are routinely assigned to operational taxonomic units (OTUs) that are then used to analyze complex microbial communities. A number of methods have been employed to carry out the assignment of 16S rRNA gene sequences to OTUs leading to confusion over which method is optimal. A recent study suggested that a clustering method should be selected based on its ability to generate stable OTU assignments that do not change as additional sequences are added to the dataset. In contrast, we contend that the quality of the OTU assignments, the ability of the method to properly represent the distances between the sequences, is more important. Methods. Our analysis implemented six de novo clustering algorithms including the single linkage, complete linkage, average linkage, abundance-based greedy clustering, distance-based greedy clustering, and Swarm and the open and closed-reference methods. Using two previously published datasets we used the Matthew's Correlation Coefficient (MCC) to assess the stability and quality of OTU assignments. Results. The stability of OTU assignments did not reflect the quality of the assignments. Depending on the dataset being analyzed, the average linkage and the distance and abundance-based greedy clustering methods generated OTUs that were more likely to represent the actual distances between sequences than the open and closed-reference methods. We also demonstrated that for the greedy algorithms VSEARCH produced assignments that were comparable to those produced by USEARCH making VSEARCH a viable free and open source alternative to USEARCH. Further interrogation of the reference-based methods indicated that when USEARCH or VSEARCH were used to identify the closest reference, the OTU assignments were sensitive to the order of the reference sequences because the reference sequences can be identical over the region being considered. More troubling was the observation that while both USEARCH and VSEARCH have a high level of sensitivity to detect reference sequences, the specificity of those matches was poor relative to the true best match. Discussion. Our analysis calls into question the quality and stability of OTU assignments generated by the open and closed-reference methods as implemented in current version of QIIME. This study demonstrates that de novo methods are the optimal method of assigning sequences into OTUs and that the quality of these assignments needs to be assessed for multiple methods to identify the optimal clustering method for a particular dataset.
Project description:BackgroundDNA sequences are increasingly seen as one of the primary information sources for species identification in many organism groups. Such approaches, popularly known as barcoding, are underpinned by the assumption that the reference databases used for comparison are sufficiently complete and feature correctly and informatively annotated entries.Methodology/principal findingsThe present study uses a large set of fungal DNA sequences from the inclusive International Nucleotide Sequence Database to show that the taxon sampling of fungi is far from complete, that about 20% of the entries may be incorrectly identified to species level, and that the majority of entries lack descriptive and up-to-date annotations.ConclusionsThe problems with taxonomic reliability and insufficient annotations in public DNA repositories form a tangible obstacle to sequence-based species identification, and it is manifest that the greatest challenges to biological barcoding will be of taxonomical, rather than technical, nature.
Project description:Most research and theory on identity integration focuses on adolescents and young adults under age 30, and relatively little is known about how identity adjusts to major life events later in life. The purpose of the present study was to operationalize and investigate identity disruption, or a loss of temporal identity integration following a disruptive life event, within the developmental context of established adulthood and midlife. We used a mixed-methods approach to examine identity disruption among 244 Afghanistan and Iraq war veterans with reintegration difficulty who participated in an expressive writing intervention. Participants completed measures of social support, posttraumatic stress disorder (PTSD) symptom severity, satisfaction with life, and reintegration difficulty at baseline right before writing, and 3 and 6 months after the expressive writing intervention. The expressive writing samples were coded for identity disruption using thematic analysis. We hypothesized that identity disruption would be associated with lower social support, more severe PTSD symptoms, lower satisfaction with life, and greater reintegration difficulty at baseline. Forty-nine percent (n = 121) of the sample indicated identity disruption in their writing samples. Identity disruption was associated with more severe PTSD symptoms, lower satisfaction with life, and greater reintegration difficulty at baseline, and with less improvement in social support. The findings suggest that identity disruption is a meaningful construct for extending the study of identity development to established adult and midlife populations, and for understanding veterans' adjustment to civilian life. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Project description:Animal gut mycobiota, the community of fungi that reside within the gastrointestinal tract, make an important contribution to host health. Accordingly, there is an emerging interest to quantify the gut mycobiota of wild animals. However, many studies of wild animal gut mycobiota do not distinguish between the fungi that likely can reside within animal gastrointestinal tracts from the fungal taxa that are non-residents, such as macrofungi, lichens or plant symbionts/pathogens that can be ingested as part of the host's diet. Confounding the non-resident and resident gut fungi may obscure attempts to identify processes associated with the authentic, resident gut mycobiota per se. To redress this problem, we propose some strategies to filter the taxa identified within an apparent gut mycobiota based on an assessment of host ecology and fungal traits. Consideration of the different sources and roles of fungi present within the gastrointestinal tract should facilitate a more precise understanding of the causes and consequences of variation in wild animal gut mycobiota composition.
Project description:BACKGROUND: Gastrointestinal nematodes of livestock have major socio-economic importance worldwide. In small ruminants, Chabertia spp. are responsible for economic losses to the livestock industries globally. Although much attention has given us insights into epidemiology, diagnosis, treatment and control of this parasite, over the years, only one species (C. ovina) has been accepted to infect small ruminants, and it is not clear whether C. erschowi is valid as a separate species. METHODS: The first and second internal transcribed spacers (ITS-1 and ITS-2) regions of nuclear ribosomal DNA (rDNA) and the complete mitochondrial (mt) genomes of C. ovina and C. erschowi were amplified and then sequenced. Phylogenetic re-construction of 15 Strongylida species (including C. erschowi) was carried out using Bayesian inference (BI) based on concatenated amino acid sequence datasets. RESULTS: The ITS rDNA sequences of C. ovina China isolates and C. erschowi samples were 852-854 bp and 862 -866 bp in length, respectively. The mt genome sequence of C. erschowi was 13,705 bp in length, which is 12 bp shorter than that of C. ovina China isolate. The sequence difference between the entire mt genome of C. ovina China isolate and that of C. erschowi was 15.33%. In addition, sequence comparison of the most conserved mt small subunit ribosomal (rrnS) and the least conserved nad2 genes among multiple individual nematodes revealed substantial nucleotide differences between these two species but limited sequence variation within each species. CONCLUSIONS: The mtDNA and rDNA datasets provide robust genetic evidence that C. erschowi is a valid strongylid nematode species. The mtDNA and rDNA datasets presented in the present study provide useful novel markers for further studies of the taxonomy and systematics of the Chabertia species from different hosts and geographical regions.