Project description:Liquid-phase transmission electron microscopy (TEM) has been recently applied to materials chemistry to gain fundamental understanding of various reaction and phase transition dynamics at nanometer resolution. However, quantitative extraction of physical and chemical parameters from the liquid-phase TEM videos remains bottlenecked by the lack of automated analysis methods compatible with the videos' high noisiness and spatial heterogeneity. Here, we integrate, for the first time, liquid-phase TEM imaging with our customized analysis framework based on a machine learning model called U-Net neural network. This combination is made possible by our workflow to generate simulated TEM images as the training data with well-defined ground truth. We apply this framework to three typical systems of colloidal nanoparticles, concerning their diffusion and interaction, reaction kinetics, and assembly dynamics, all resolved in real-time and real-space by liquid-phase TEM. A diversity of properties for differently shaped anisotropic nanoparticles are mapped, including the anisotropic interaction landscape of nanoprisms, curvature-dependent and staged etching profiles of nanorods, and an unexpected kinetic law of first-order chaining assembly of concave nanocubes. These systems representing properties at the nanoscale are otherwise experimentally inaccessible. Compared to the prevalent image segmentation methods, U-Net shows a superior capability to predict the position and shape boundary of nanoparticles from highly noisy and fluctuating background-a challenge common and sometimes inevitable in liquid-phase TEM videos. We expect our framework to push the potency of liquid-phase TEM to its full quantitative level and to shed insights, in high-throughput and statistically significant fashion, on the nanoscale dynamics of synthetic and biological nanomaterials.
Project description:The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100?fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 × 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10?nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics.
Project description:We demonstrate a new design of graphene liquid cell consisting of a thin lithographically patterned hexagonal boron nitride crystal encapsulated on both sides with graphene windows. The ultrathin window liquid cells produced have precisely controlled volumes and thicknesses and are robust to repeated vacuum cycling. This technology enables exciting new opportunities for liquid cell studies, providing a reliable platform for high resolution transmission electron microscope imaging and spectral mapping. The presence of water was confirmed using electron energy loss spectroscopy (EELS) via the detection of the oxygen K-edge and measuring the thickness of full and empty cells. We demonstrate the imaging capabilities of these liquid cells by tracking the dynamic motion and interactions of small metal nanoparticles with diameters of 0.5-5 nm. We further present an order of magnitude improvement in the analytical capabilities compared to previous liquid cell data with 1 nm spatial resolution elemental mapping achievable for liquid encapsulated bimetallic nanoparticles using energy dispersive X-ray spectroscopy (EDXS).
Project description:Water is ubiquitous on earth, but we know little about the real-space motion of molecules in liquid water. We demonstrate that high-resolution inelastic x-ray scattering measurement over a wide range of momentum and energy transfer makes it possible to probe real-space, real-time dynamics of water molecules through the so-called Van Hove function. Water molecules are found to be strongly correlated in space and time with coupling between the first and second nearest-neighbor molecules. The local dynamic correlation of molecules observed here is crucial to a fundamental understanding of the origin of the physical properties of water, including viscosity. The results also suggest that the quantum-mechanical nature of hydrogen bonds could influence its dynamics. The approach used here offers a powerful experimental method for investigating real-space dynamics of liquids.
Project description:An acoustic plasmon mode in a graphene-dielectric-metal structure has recently been spotlighted as a superior platform for strong light-matter interaction. It originates from the coupling of graphene plasmon with its mirror image and exhibits the largest field confinement in the limit of a sub-nm-thick dielectric. Although recently detected in the far-field regime, optical near-fields of this mode are yet to be observed and characterized. Here, we demonstrate a direct optical probing of the plasmonic fields reflected by the edges of graphene via near-field scattering microscope, revealing a relatively small propagation loss of the mid-infrared acoustic plasmons in our devices that allows for their real-space mapping at ambient conditions even with unprotected, large-area graphene grown by chemical vapor deposition. We show an acoustic plasmon mode that is twice as confined and has 1.4 times higher figure of merit in terms of the normalized propagation length compared to the graphene surface plasmon under similar conditions. We also investigate the behavior of the acoustic graphene plasmons in a periodic array of gold nanoribbons. Our results highlight the promise of acoustic plasmons for graphene-based optoelectronics and sensing applications.
Project description:The tip of a scanning tunnelling microscope is an atomic-scale source of electrons and holes. As the injected charge spreads out, it can induce adsorbed molecules to react. By comparing large-scale 'before' and 'after' images of an adsorbate covered surface, the spatial extent of the nonlocal manipulation is revealed. Here, we measure the nonlocal manipulation of toluene molecules on the Si(111)-7 × 7 surface at room temperature. Both the range and probability of nonlocal manipulation have a voltage dependence. A region within 5-15 nm of the injection site shows a marked reduction in manipulation. We propose that this region marks the extent of the initial coherent (that is, ballistic) time-dependent evolution of the injected charge carrier. Using scanning tunnelling spectroscopy, we develop a model of this time-dependent expansion of the initially localized hole wavepacket within a particular surface state and deduce a quantum coherence (ballistic) lifetime of ∼10 fs.
Project description:Determining the 3D atomic structures of multi-element nanoparticles in their native liquid environment is crucial to understanding their physicochemical properties. Graphene liquid cell (GLC) TEM offers a platform to directly investigate nanoparticles in their solution phase. Moreover, exploiting high-resolution TEM images of single rotating nanoparticles in GLCs, 3D atomic structures of nanoparticles are reconstructed by a method called "Brownian one-particle reconstruction". We here introduce a 3D atomic structure determination method for multi-element nanoparticle systems. The method, which is based on low-pass filtration and initial 3D model generation customized for different types of multi-element systems, enables reconstruction of high-resolution 3D Coulomb density maps for ordered and disordered multi-element systems and classification of the heteroatom type. Using high-resolution image datasets obtained from TEM simulations of PbSe, CdSe, and FePt nanoparticles that are structurally relaxed with first-principles calculations in the graphene liquid cell, we show that the types and positions of the constituent atoms are precisely determined with root mean square displacement values less than 24 pm. Our study suggests that it is possible to investigate the 3D atomic structures of synthesized multi-element nanoparticles in liquid phase.
Project description:Magnetic skyrmions are topologically nontrivial particles with a potential application as information elements in future spintronic device architectures. While they are commonly portrayed as two dimensional objects, in reality magnetic skyrmions are thought to exist as elongated, tube-like objects extending through the thickness of the host material. The study of this skyrmion tube state (SkT) is vital for furthering the understanding of skyrmion formation and dynamics for future applications. However, direct experimental imaging of skyrmion tubes has yet to be reported. Here, we demonstrate the real-space observation of skyrmion tubes in a lamella of FeGe using resonant magnetic x-ray imaging and comparative micromagnetic simulations, confirming their extended structure. The formation of these structures at the edge of the sample highlights the importance of confinement and edge effects in the stabilisation of the SkT state, opening the door to further investigation into this unexplored dimension of the skyrmion spin texture.
Project description:The ability of membrane technologies to dynamically tune the transport behavior for gases and liquids is critical for their applications. Although various methods have been developed to improve membrane success, tradeoffs still exist among their properties, such as permeability, selectivity, fouling resistance, and stability, which can greatly affect the performance of membranes. Existing elastomeric membrane designs can provide antifracture properties and flexibility; however, these designs still face certain challenges, such as low tensile strength and reliability. Additionally, researchers have not yet thoroughly developed membranes that can avoid fouling issues while realizing precise dynamic control over the transport substances. In this study, we show a versatile strategy for preparing graphene oxide-reinforced elastomeric liquid gating membranes that can finely modulate and dynamically tune the sorting of a wide range of gases and liquids under constant applied pressures. Moreover, the produced membranes exhibit antifouling properties and are adaptable to different length scales, pressures, and environments. The filling of graphene oxide in the thermoplastic polyurethane matrix enhances the composites through hydrogen bonds. Experiments and theoretical calculations are carried out to demonstrate the stability of our system. Our membrane exhibits good stretchability, recovery, and durability due to the elastic nature of the solid matrix and dynamic nature of the gating liquid. Dynamic control over the transport of gases and liquids is achieved through our optimized interfacial design and controllable pore deformation, which is induced by mechanical stimuli. Our strategy will create new opportunities for many applications, such as gas-involved chemical reactions, multiphase separation, microfluidics, multiphase microreactors, and particulate material synthesis.
Project description:The incorporation of nanostructured carbon has been recently reported as an effective approach to improve the cycling stability when Si is used as high-capacity anodes for the next generation Li-ion battery. However, the mechanism of such notable improvement remains unclear. Herein, we report in-situ transmission electron microscopy (TEM) studies to directly observe the dynamic electrochemical lithiation/delithiation processes of crumpled graphene-encapsulated Si nanoparticles to understand their physical and chemical transformations. Unexpectedly, in the first lithiation process, crystalline Si nanoparticles undergo an isotropic to anisotropic transition, which is not observed in pure crystalline and amorphous Si nanoparticles. Such a surprising phenomenon arises from the uniformly distributed localized voltage around the Si nanoparticles due to the highly conductive graphene sheets. It is observed that the intimate contact between graphene and Si is maintained during volume expansion/contraction. Electrochemical sintering process where small Si nanoparticles react and merge together to form large agglomerates following spikes in localized electric current is another problem for batteries. In-situ TEM shows that graphene sheets help maintain the capacity even in the course of electrochemical sintering. Such in-situ TEM observations provide valuable phenomenological insights into electrochemical phenomena, which may help optimize the configuration for further improved performance.