Unknown

Dataset Information

0

Ginsenoside Rb1 Mitigates Escherichia coli Lipopolysaccharide-Induced Endometritis through TLR4-Mediated NF-κB Pathway.


ABSTRACT: Endometritis is the inflammatory response of the endometrial lining of the uterus and is associated with low conception rates, early embryonic mortality, and prolonged inter-calving intervals, and thus poses huge economic losses to the dairy industry worldwide. Ginsenoside Rb1 (GnRb1) is a natural compound obtained from the roots of Panax ginseng, having several pharmacological and biological properties. However, the anti-inflammatory properties of GnRb1 in lipopolysaccharide (LPS)-challenged endometritis through the TLR4-mediated NF-κB signaling pathway has not yet been researched. This study was planned to evaluate the mechanisms of how GnRb1 rescues LPS-induced endometritis. In the present research, histopathological findings revealed that GnRb1 ameliorated LPS-triggered uterine injury. The ELISA and RT-qPCR assay findings indicated that GnRb1 suppressed the expression level of pro-inflammatory molecules (TNF-α, IL-1β and IL-6) and boosted the level of anti-inflammatory (IL-10) cytokine. Furthermore, the molecular study suggested that GnRb1 attenuated TLR4-mediated NF-κB signaling. The results demonstrated the therapeutic efficacy of GnRb1 in the mouse model of LPS-triggered endometritis via the inhibition of the TLR4-associated NF-κB pathway. Taken together, this study provides a baseline for the protective effect of GnRb1 to treat endometritis in both humans and animals.

SUBMITTER: Shaukat A 

PROVIDER: S-EPMC8659231 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5386742 | biostudies-literature
| S-EPMC10977739 | biostudies-literature
| S-EPMC6751487 | biostudies-literature
| S-EPMC3485618 | biostudies-literature
| S-EPMC7247275 | biostudies-literature
| S-EPMC5563358 | biostudies-literature
| S-EPMC5359552 | biostudies-literature
| S-EPMC8422159 | biostudies-literature
| S-EPMC9499631 | biostudies-literature
| S-EPMC5540891 | biostudies-other