Ontology highlight
ABSTRACT: Background
Obesity is associated with electrophysiological remodeling, which manifests as detectable changes on the surface electrocardiogram (ECG).Objective
To develop neural networks (NN) to predict body mass index (BMI) from ECGs and test the hypothesis that discrepancies between NN-predicted BMI and measured BMI are indicative of underlying adiposity and/or concurrent cardiometabolic ill-health.Methods
NN models were developed using 36,856 12-lead resting ECGs from the UK Biobank. Two architectures were developed for continuous and categorical BMI estimation (normal weight [BMI <25 kg/m2] vs overweight/obese [BMI ≥25 kg/m2]). Models for male and female participants were trained and tested separately. For each sex, data were randomly divided into 4 folds, and models were evaluated in a leave-1-fold-out manner.Results
ECGs were available for 17,807 male and 19,049 female participants (mean ages: 61 ± 7 and 63 ± 8 years; mean BMI 26 ± 5 kg/m2 and 27 ± 4 kg/m2, respectively). NN models detected overweight/obese individuals with average accuracies of 75% and 73% for male and female subjects, respectively. The magnitudes of difference between NN-predicted BMI and actual BMI were significantly correlated with visceral adipose tissue volumes. Concurrent hypertension, diabetes, dyslipidemia, and/or coronary heart disease explained false-positive classifications (ie, calculated BMI <25 kg/m2 misclassified as ≥25 kg/m2 by NN model, P < .001).Conclusion
NN models applied to 12-lead ECGs predict BMI with a reasonable degree of accuracy. Discrepancies between NN-predicted and calculated BMI may be indicative of underlying visceral adiposity and concomitant cardiometabolic perturbation, which could be used to identify individuals at risk of cardiometabolic disease.
SUBMITTER: Li X
PROVIDER: S-EPMC8669785 | biostudies-literature |
REPOSITORIES: biostudies-literature