Project description:The Cl- intracellular channel (CLIC) family members uniquely transition between soluble and membrane-associated conformations. Despite decades of extensive functional and structural studies, CLICs’ function as ion channels remains debated, rendering our understanding of their physiological role incomplete. Here, we expose a novel function of CLIC5 as a fusogen. We demonstrate that purified CLIC5 directly interacts with the membrane and induces fusion, as reflected by increased liposomal diameter and lipid and content mixing between liposomes. Moreover, we show that this activity is facilitated by acidic pH, a known trigger for CLICs’ transition to a membrane-associated conformation and that increased exposure of the hydrophobic inter-domain interface is crucial for this process. Finally, mutation of a conserved hydrophobic interfacial residue diminishes the fusogenic activity of CLIC5 in vitro and impairs excretory canal formation in C. elegans in vivo. Together, our results unravel the long-sought physiological role of these enigmatic proteins.
Project description:The Rag family proteins are Ras-like small GTPases that have a critical role in amino-acid-stimulated mTORC1 activation by recruiting mTORC1 to lysosome. Despite progress in the mechanistic understanding of Rag GTPases in mTORC1 activation, little is known about the physiological function of Rag GTPases in vivo. Here we show that loss of RagA and RagB (RagA/B) in cardiomyocytes results in hypertrophic cardiomyopathy and phenocopies lysosomal storage diseases, although mTORC1 activity is not substantially impaired in vivo. We demonstrate that despite upregulation of lysosomal protein expression by constitutive activation of the transcription factor EB (TFEB) in RagA/B knockout mouse embryonic fibroblasts, lysosomal acidification is compromised owing to decreased v-ATPase level in the lysosome fraction. Our study uncovers RagA/B GTPases as key regulators of lysosomal function and cardiac protection.
Project description:ClC-7 is a chloride channel of late endosomes and lysosomes. In osteoclasts, it may cooperate with H(+)-ATPases in acidifying the resorption lacuna. In mice and man, loss of ClC-7 or the H(+)-ATPase a3 subunit causes osteopetrosis, a disease characterized by defective bone resorption. We show that ClC-7 knockout mice additionally display neurodegeneration and severe lysosomal storage disease despite unchanged lysosomal pH in cultured neurons. Rescuing their bone phenotype by transgenic expression of ClC-7 in osteoclasts moderately increased their lifespan and revealed a further progression of the central nervous system pathology. Histological analysis demonstrated an accumulation of electron-dense material in neurons, autofluorescent structures, microglial activation and astrogliosis. Like in human neuronal ceroid lipofuscinosis, there was a strong accumulation of subunit c of the mitochondrial ATP synthase and increased amounts of lysosomal enzymes. Such alterations were minor or absent in ClC-3 knockout mice, despite a massive neurodegeneration. Osteopetrotic oc/oc mice, lacking a functional H(+)-ATPase a3 subunit, showed no comparable retinal or neuronal degeneration. There are important medical implications as defects in the H(+)-ATPase and ClC-7 can underlie human osteopetrosis.
Project description:Defects in the MFSD8 gene encoding the lysosomal membrane protein CLN7 lead to CLN7 disease, a neurodegenerative lysosomal storage disorder belonging to the group of neuronal ceroid lipofuscinoses. Here, we have performed a SILAC-based quantitative analysis of the lysosomal proteome using Cln7-deficient mouse embryonic fibroblasts (MEFs) from a Cln7 knockout (ko) mouse model. From 3335 different proteins identified, we detected 56 soluble lysosomal proteins and 29 highly abundant lysosomal membrane proteins. Quantification revealed that the amounts of 12 different soluble lysosomal proteins were significantly reduced in Cln7 ko MEFs compared with wild-type controls. One of the most significantly depleted lysosomal proteins was Cln5 protein that underlies another distinct neuronal ceroid lipofuscinosis disorder. Expression analyses showed that the mRNA expression, biosynthesis, intracellular sorting and proteolytic processing of Cln5 were not affected, whereas the depletion of mature Cln5 protein was due to increased proteolytic degradation by cysteine proteases in Cln7 ko lysosomes. Considering the similar phenotypes of CLN5 and CLN7 patients, our data suggest that depletion of CLN5 may play an important part in the pathogenesis of CLN7 disease. In addition, we found a defect in the ability of Cln7 ko MEFs to adapt to starvation conditions as shown by impaired mammalian target of rapamycin complex 1 reactivation, reduced autolysosome tubulation and increased perinuclear accumulation of autolysosomes compared with controls. In summary, depletion of multiple soluble lysosomal proteins suggest a critical role of CLN7 for lysosomal function, which may contribute to the pathogenesis and progression of CLN7 disease.
Project description:To investigate the effect of chloride intracellular channel 1 (CLIC1) on the cell proliferation, apoptosis, migration and invasion of gastric cancer cells.CLIC1 expression was evaluated in human gastric cancer cell lines SGC-7901 and MGC-803 by real time polymerase chain reaction (RT-PCR). Four segments of small interference RNA (siRNA) targeting CLIC1 mRNA and a no-sense control segment were designed by bioinformatics technology. CLIC1 siRNA was selected using Lipofectamine 2000 and transfected transiently into human gastric cancer SGC-7901 and MGC-803 cells. The transfected efficiency was observed under fluorescence microscope. After transfection, mRNA expression of CLIC1 was detected with RT-PCR and Western blotting was used to detect the protein expression. Proliferation was examined by methyl thiazolyl tetrazolium and apoptosis was detected with flow cytometry. Polycarbonate membrane transwell chamber and Matrigel were used for the detection of the changes of invasion and migration of the two cell lines.In gastric cancer cell lines SGC-7901 and MGC-803, CLIC1 was obviously expressed and CLIC1 siRNA could effectively suppress the expression of CLIC1 protein and mRNA. Proliferation of cells transfected with CLIC1 siRNA3 was enhanced notably, and the highest proliferation rate was 23.3% (P = 0.002) in SGC-7901 and 35.55% (P = 0.001) in MGC-803 cells at 48 h. The G2/M phase proportion increased, while G0/G1 and S phase proportions decreased. The apoptotic rate of the CLIC1 siRNA3 group obviously decreased in both SGC-7901 cells (62.24%, P = 0.000) and MGC-803 cells (52.67%, P = 0.004). Down-regulation of CLIC1 led to the inhibition of invasion and migration by 54.31% (P = 0.000) and 33.62% (P = 0.001) in SGC-7901 and 40.74% (P = 0.000) and 29.26% (P = 0.002) in MGC-803. However, there was no significant difference between the mock group cells and the negative control group cells.High CLIC1 expression can efficiently inhibit proliferation and enhance apoptosis, migration and invasion of gastric cancer cells in vitro. CLIC1 might be a promising target for the treatment of gastric cancer.
Project description:Calcium-activated chloride channels (CaCC) with similar hallmark features are present in many cell types and mediate important physiological functions including epithelial secretion, sensory signal transduction, and smooth muscle contraction. Having identified TMEM16A of the transmembrane proteins with unknown function (TMEM) 16 family as a CaCC subunit, we have developed antibodies specific for mouse TMEM16A, as evidenced by the absence of immunoreactivity in TMEM16A knockout mice. Here, we show that TMEM16A is located in the apical membranes of epithelial cells in exocrine glands and trachea. In addition, TMEM16A is expressed in airway smooth muscle cells and the smooth muscle cells of reproductive tracts, the oviduct and ductus epididymis. In the gastrointestinal (GI) tract, TMEM16A is absent from smooth muscle cells, but present in the interstitial cells of Cajal (ICC), the pacemaker cells that control smooth muscle contraction. The physiological importance of TMEM16A is underscored by the diminished rhythmic contraction of gastric smooth muscle from TMEM16A knockout mice. The TMEM16A expression pattern established in this study thus provides a roadmap for the analyses of physiological functions of calcium-activated chloride channels that contain TMEM16A subunits.
Project description:Neuronal ceroid lipofuscinoses (NCLs) constitute a group of progressive neurodegenerative disorders resulting from mutations in at least eight different genes. Mutations in the most recently identified NCL gene, MFSD8/CLN7, underlie a variant of late-infantile NCL (vLINCL). The MFSD8/CLN7 gene encodes a polytopic protein with unknown function, which shares homology with ion-coupled membrane transporters. In this study, we confirmed the lysosomal localization of the native CLN7 protein. This localization of CLN7 is not impaired by the presence of pathogenic missense mutations or after genetic ablation of the N-glycans. Expression of chimeric and full-length constructs showed that lysosomal targeting of CLN7 is mainly determined by an N-terminal dileucine motif, which specifically binds to the heterotetrameric adaptor AP-1 in vitro. We also show that CLN7 mRNA is more abundant in neurons than astrocytes and microglia, and that it is expressed throughout rat brain, with increased levels in the granular layer of cerebellum and hippocampal pyramidal cells. Interestingly, this cellular and regional distribution is in good agreement with the autofluorescent lysosomal storage and cell loss patterns found in brains from CLN7-defective patients. Overall, these data highlight lysosomes as the primary site of action for CLN7, and suggest that the pathophysiology underpinning CLN7-associated vLINCL is a cell-autonomous process.
Project description:The chloride channel-3 (ClC-3) protein is known to be a component of Cl- channels involved in cell volume regulation or acidification of intracellular vesicles. Here, we report that ClC-3 was highly expressed in the cytoplasm of metastatic carcinomatous cells and accelerated cell migration in vitro and tumor metastasis in vivo. High-grade expression of cytoplasmic ClC-3 predicted poor survival in cancer patients. We found that independent of its volume-activated Cl- channel properties, ClC-3 was able to promote cell membrane ruffling, required for tumor metastasis. ClC-3 mediated membrane ruffling by regulating keratin 18 phosphorylation to control β1 Integrin recycling. Therefore, cytoplasmic ClC-3 plays an active and key role in tumor metastasis and may be a valuable prognostic biomarker and a therapeutic target to prevent tumor spread.
Project description:Intracellular chloride channel protein 1 (CLIC1) is a 241 amino acid protein of the glutathione S transferase fold family with redox- and pH-dependent membrane association and chloride ion channel activity. Whilst CLIC proteins are evolutionarily conserved in Metazoa, indicating an important role, little is known about their biology. CLIC1 was first cloned on the basis of increased expression in activated macrophages. We therefore examined its subcellular localisation in murine peritoneal macrophages by immunofluorescence confocal microscopy. In resting cells, CLIC1 is observed in punctate cytoplasmic structures that do not colocalise with markers for endosomes or secretory vesicles. However, when these macrophages phagocytose serum-opsonised zymosan, CLIC1 translocates onto the phagosomal membrane. Macrophages from CLIC1(-/-) mice display a defect in phagosome acidification as determined by imaging live cells phagocytosing zymosan tagged with the pH-sensitive fluorophore Oregon Green. This altered phagosomal acidification was not accompanied by a detectable impairment in phagosomal-lysosomal fusion. However, consistent with a defect in acidification, CLIC1(-/-) macrophages also displayed impaired phagosomal proteolytic capacity and reduced reactive oxygen species production. Further, CLIC1(-/-) mice were protected from development of serum transfer induced K/BxN arthritis. These data all point to an important role for CLIC1 in regulating macrophage function through its ion channel activity and suggest it is a suitable target for the development of anti-inflammatory drugs.
Project description:Primary aldosteronism (PA), a common cause of severe hypertension, features constitutive production of the adrenal steroid aldosterone. We analyzed a multiplex family with familial hyperaldosteronism type II (FH-II) and 80 additional probands with unsolved early-onset PA. Eight probands had novel heterozygous variants in CLCN2, including two de novo mutations and four independent occurrences of the identical p.Arg172Gln mutation; all relatives with early-onset PA carried the CLCN2 variant found in probands. CLCN2 encodes a voltage-gated chloride channel expressed in adrenal glomerulosa that opens at hyperpolarized membrane potentials. In this data set, we examined RNA expression in H295R cells transfected with empty vector, WT and p.Arg172Gln CLCN2. Expression of CLCN2 led to increased expression of CYP11B2 and its upstream regulator NR4A2.