Project description:Owing to their exceptional diversity and central role in vertebrate evolution, teeth are key biological systems. We exploited the diversity of bearded dragon dentitions to unreveal new aspects of major dental characters only represented in non-mammalian lineages.
Project description:Campylobacter fetus is a gram-negative bacterial pathogen of both humans and animals. Two subspecies have been identified, Campylobacter fetus subsp. fetus and Campylobacter fetus subsp. venerealis, and there are two serotypes, A and B. To further investigate the genetic diversity among C. fetus strains of different origins, subspecies, and serotypes, we performed multiple genetic analyses by utilizing random amplification of polymorphic DNA (RAPD), pulsed-field gel electrophoresis (PFGE), and DNA-DNA hybridization. All 10 primers used for the RAPD analyses can distinguish C. fetus strains of reptile and mammal origin, five can differentiate between C. fetus subsp. fetus and C. fetus subsp. venerealis strains, and four showed differences between type A and type B isolates from mammals. PFGE with SmaI and SalI digestion showed varied genome patterns among different C. fetus strains, but for mammalian C. fetus isolates, genome size was well conserved (mean, 1.52 +/- 0.06 Mb for SmaI and 1.52 +/- 0.05 Mb for SalI). DNA-DNA hybridization demonstrated substantial genomic-homology differences between strains of mammal and reptile origin. In total, these data suggest that C. fetus subsp fetus strains of reptile and mammal origin have genetic divergence more extensive than that between the two subspecies and that between the type A and type B strains. Combining these studies with sequence data, we conclude that there has been substantial genetic divergence between Campylobacter fetus of reptile and mammal origin. Diagnostic tools have been developed to differentiate among C. fetus isolates for taxonomic and epidemiologic uses.
Project description:Cell fate decisions during multicellular development are precisely coordinated, leading to highly reproducible macroscopic structural outcomes [1-3]. The origins of this reproducibility are found at the molecular level during the earliest stages of development when patterns of morphogen molecules emerge reproducibly [4, 5]. However, although the initial conditions for these early stages are determined by the female during oogenesis, it is unknown whether reproducibility is perpetuated from oogenesis or reacquired by the zygote. To address this issue in the early Drosophila embryo, we sought to count individual maternally deposited bicoid mRNA molecules and compare variability between embryos with previously observed fluctuations in the Bicoid protein gradient [6, 7]. Here, we develop independent methods to quantify total amounts of mRNA in individual embryos and show that mRNA counts are highly reproducible between embryos to within ~9%, matching the reproducibility of the protein gradient. Reproducibility emerges from perfectly linear feedforward processes: changing the genetic dosage in the female leads to proportional changes in both mRNA and protein numbers in the embryo. Our results indicate that the reproducibility of the morphological structures of embryos originates during oogenesis, which is when the expression of maternally provided patterning factors is precisely controlled.
Project description:Many animals manipulate their environments in ways that appear to augment cognitive processing. Adult humans show remarkable flexibility in this domain, typically relying on internal cognitive processing when adequate but turning to external support in situations of high internal demand. We use calendars, calculators, navigational aids and other external means to compensate for our natural cognitive shortcomings and achieve otherwise unattainable feats of intelligence. As yet, however, the developmental origins of this fundamental capacity for cognitive offloading remain largely unknown. In two studies, children aged 4-11 years (n = 258) were given an opportunity to manually rotate a turntable to eliminate the internal demands of mental rotation--to solve the problem in the world rather than in their heads. In study 1, even the youngest children showed a linear relationship between mental rotation demand and likelihood of using the external strategy, paralleling the classic relationship between angle of mental rotation and reaction time. In study 2, children were introduced to a version of the task where manually rotating inverted stimuli was sometimes beneficial to performance and other times redundant. With increasing age, children were significantly more likely to manually rotate the turntable only when it would benefit them. These results show how humans gradually calibrate their cognitive offloading strategies throughout childhood and thereby uncover the developmental origins of this central facet of intelligence.
Project description:BackgroundUnderstanding mechanisms responsible for changes in tooth morphology in the course of evolution is an area of investigation common to both paleontology and developmental biology. Detailed analyses of molar tooth crown shape have shown frequent homoplasia in mammalian evolution, which requires accurate investigation of the evolutionary pathways provided by the fossil record. The necessity of preservation of an effective occlusion has been hypothesized to functionally constrain crown morphological changes and to also facilitate convergent evolution. The Muroidea superfamily constitutes a relevant model for the study of molar crown diversification because it encompasses one third of the extant mammalian biodiversity.Methodology/principal findingsCombined microwear and 3D-topographic analyses performed on fossil and extant muroid molars allow for a first quantification of the relationships between changes in crown morphology and functionality of occlusion. Based on an abundant fossil record and on a well resolved phylogeny, our results show that the most derived functional condition associates longitudinal chewing and non interlocking of cusps. This condition has been reached at least 7 times within muroids via two main types of evolutionary pathways each respecting functional continuity. In the first type, the flattening of tooth crown which induces the removal of cusp interlocking occurs before the rotation of the chewing movement. In the second type however, flattening is subsequent to rotation of the chewing movement which can be associated with certain changes in cusp morphology.Conclusion/significanceThe reverse orders of the changes involved in these different pathways reveal a mosaic evolution of mammalian dentition in which direction of chewing and crown shape seem to be partly decoupled. Either can change in respect to strong functional constraints affecting occlusion which thereby limit the number of the possible pathways. Because convergent pathways imply distinct ontogenetic trajectories, new Evo/Devo comparative studies on cusp morphogenesis are necessary.
Project description:Medulloblastoma encompasses a collection of clinically and molecularly diverse tumour subtypes that together comprise the most common malignant childhood brain tumour. These tumours are thought to arise within the cerebellum, with approximately 25% originating from granule neuron precursor cells (GNPCs) after aberrant activation of the Sonic Hedgehog pathway (hereafter, SHH subtype). The pathological processes that drive heterogeneity among the other medulloblastoma subtypes are not known, hindering the development of much needed new therapies. Here we provide evidence that a discrete subtype of medulloblastoma that contains activating mutations in the WNT pathway effector CTNNB1 (hereafter, WNT subtype) arises outside the cerebellum from cells of the dorsal brainstem. We found that genes marking human WNT-subtype medulloblastomas are more frequently expressed in the lower rhombic lip (LRL) and embryonic dorsal brainstem than in the upper rhombic lip (URL) and developing cerebellum. Magnetic resonance imaging (MRI) and intra-operative reports showed that human WNT-subtype tumours infiltrate the dorsal brainstem, whereas SHH-subtype tumours are located within the cerebellar hemispheres. Activating mutations in Ctnnb1 had little impact on progenitor cell populations in the cerebellum, but caused the abnormal accumulation of cells on the embryonic dorsal brainstem which included aberrantly proliferating Zic1(+) precursor cells. These lesions persisted in all mutant adult mice; moreover, in 15% of cases in which Tp53 was concurrently deleted, they progressed to form medulloblastomas that recapitulated the anatomy and gene expression profiles of human WNT-subtype medulloblastoma. We provide the first evidence, to our knowledge, that subtypes of medulloblastoma have distinct cellular origins. Our data provide an explanation for the marked molecular and clinical differences between SHH- and WNT-subtype medulloblastomas and have profound implications for future research and treatment of this important childhood cancer.
Project description:Human adults can infer unseen causes because they represent the events around them in terms of their underlying causal mechanisms. It has been argued that young preschoolers can also make causal inferences from an early age, but whether or not non-human apes can go beyond associative learning when exploiting causality is controversial. However, much of the developmental research to date has focused on fully-perceivable causal relations or highlighted the existence of a causal relationship verbally and these were found to scaffold young children's abilities. We examined inferences about unseen causes in children and chimpanzees in the absence of linguistic cues. Children (N = 129, aged 3-6 years) and zoo-living chimpanzees (N = 11, aged 7-41 years) were presented with an event in which a reward was dropped through an opaque forked-tube into one of two cups. An auditory cue signaled which of the cups contained the reward. In the causal condition, the cue followed the dropping event, making it plausible that the sound was caused by the reward falling into the cup; and in the arbitrary condition, the cue preceded the dropping event, making the relation arbitrary. By 4-years of age, children performed better in the causal condition than the arbitrary one, suggesting that they engaged in reasoning. A follow-up experiment ruled out a simpler associative learning explanation. Chimpanzees and 3-year-olds performed at chance in both conditions. These groups' performance did not improve in a simplified version of the task involving shaken boxes; however, the use of causal language helped 3-year-olds. The failure of chimpanzees could reflect limitations in reasoning about unseen causes or a more general difficulty with auditory discrimination learning.
Project description:Central norepinephrine-producing neurons comprise a diverse population of cells differing in anatomical location, connectivity, function and response to disease and environmental insult. The mechanisms that generate this diversity are unknown. Here we elucidate the lineal relationship between molecularly distinct progenitor populations in the developing mouse hindbrain and mature norepinephrine neuron subtype identity. We have identified four genetically separable subpopulations of mature norepinephrine neurons differing in their anatomical location, axon morphology and efferent projection pattern. One of the subpopulations showed an unexpected projection to the prefrontal cortex, challenging the long-held belief that the locus coeruleus is the sole source of norepinephrine projections to the cortex. These findings reveal the embryonic origins of central norepinephrine neurons and provide multiple molecular points of entry for future study of individual norepinephrine circuits in complex behavioral and physiological processes including arousal, attention, mood, memory, appetite and homeostasis.
Project description:Primary hypertension continues to be one of the main risk factors for cardiovascular disease worldwide. A stable intrauterine environment is critical for the future development and health of the fetus. The developing kidney has been found to be especially vulnerable during this time period, and epidemiological studies have demonstrated that an adverse in utero environment is associated with an increased risk of hypertension and chronic kidney disease. Macro- and micronutrient deficiencies as well as exposure to tobacco, alcohol, and certain medications during gestation have been shown to negatively impact nephrogenesis and reduce one's nephron number. In 1988, Brenner et al. put forth the controversial hypothesis that a reduced nephron complement is a risk factor for hypertension and chronic kidney disease in adulthood. Since then numerous animal and human studies have confirmed this relationship demonstrating that there is an inverse association between blood pressure and nephron number. As our understanding of the developmental programming of hypertension and other non-communicable diseases improves, more effective preventive health measures can be developed in the future.