Ontology highlight
ABSTRACT: Background
As cancer is one of the main leading causes of mortality, a series of monotherapies such as chemotherapy, gene therapy and radiotherapy have been developed to overcome this thorny problem. However, a single treatment approach could not achieve satisfactory effect in many experimental explorations.Results
In this study, we report the fabrication of cyclic RGD peptide (cRGD) modified Au4-iron oxide nanoparticle (Au4-IO NP-cRGD) based on aggregation-induced emission (AIE) as a multifunctional theranostic system. Besides Au4 cluster-based fluorescence imaging and enhanced radiotherapy, iron oxide (IO) nanocluster could realize magnetic resonance (MR) imaging and Fenton reaction-based chemotherapy. Abundant toxic reactive oxygen species generated from X-ray irradiation and in situ tumor-specific Fenton reaction under acidic microenvironment leads to the apoptotic and necrotic death of cancer cells. In vivo studies demonstrated good biocompatibility of Au4-IO NP-cRGD and a high tumor suppression rate of 81.1% in the synergistic therapy group.Conclusions
The successful dual-modal imaging and combined tumor therapy demonstrated AIE as a promising strategy for constructing multifunctional cancer theranostic platform.
SUBMITTER: Hua Y
PROVIDER: S-EPMC8686291 | biostudies-literature |
REPOSITORIES: biostudies-literature