Project description:The endoscopic features between herpes simplex virus (HSV) and cytomegalovirus (CMV) esophagitis overlap significantly, and hence the differential diagnosis between HSV and CMV esophagitis is sometimes difficult. Therefore, we developed a machine-learning-based classifier to discriminate between CMV and HSV esophagitis. We analyzed 87 patients with HSV esophagitis and 63 patients with CMV esophagitis and developed a machine-learning-based artificial intelligence (AI) system using a total of 666 endoscopic images with HSV esophagitis and 416 endoscopic images with CMV esophagitis. In the five repeated five-fold cross-validations based on the hue-saturation-brightness color model, logistic regression with a least absolute shrinkage and selection operation showed the best performance (sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and area under the receiver operating characteristic curve: 100%, 100%, 100%, 100%, 100%, and 1.0, respectively). Previous history of transplantation was included in classifiers as a clinical factor; the lower the performance of these classifiers, the greater the effect of including this clinical factor. Our machine-learning-based AI system for differential diagnosis between HSV and CMV esophagitis showed high accuracy, which could help clinicians with diagnoses.
Project description:Herpes simplex virus type 1 (HSV-1) infection induces various clinical disorders, such as herpes simplex encephalitis (HSE), herpes simplex keratitis (HSK), and genital herpes. In clinical intervention, acyclovir (ACV) is the major therapeutic drug used to suppress HSV-1; however, ACV-resistant strains have gradually increased. In the present study, harringtonine (HT) significantly inhibited infection of HSV-1 as well as two ACV-resistant strains, including HSV-1 blue and HSV-1 153. Time-of-drug addition assay further revealed that HT mainly reduced the early stage of HSV-1 infection. We also demonstrated that HT mainly affected herpes virus entry mediator (HVEM) expression as shown by qPCR, Western Blot, and Immunofluorescence. Collectively, HT showed antiviral activity against HSV-1 and ACV-resistant strains by targeting HVEM and could be a promising therapeutic candidate for mitigating HSV-1-induced-pathogenesis.
Project description:Some findings suggest an infectious factor in cardiac myxoma and certain histopathological features indicate herpes simplex virus type 1 (HSV-1) infection. We hypothesized that HSV-1 may be involved in the pathogenesis of cardiac myxoma. Paraffin-embedded tissue samples from 17 patients with atrial myxoma were investigated for HSV-1 antigen by immunohistochemistry and viral genomic DNA by nested polymerase chain reaction. The histogenesis and oncogenesis of atrial myxoma were assessed by the expression of calretinin, Ki67, and p53 protein, respectively. Autopsy myocardial samples, including endocardium from 12 patients who died by accident or other conditions, were used for comparison. HSV-1 antigen was detected in atrial myxoma from 12 of 17 patients: 8 of these 12 samples were positive also for HSV-1 DNA. No HSV-1 antigen or DNA was found in tissue from the comparison group. Antigens of HSV-2, varicella-zoster virus, Epstein-Barr virus, and cytomegalovirus were not found in atrial myxoma. Calretinin was found in myxoma cells of all 17 cases but Ki67 was present only in smooth muscle cells or infiltrating cells in some cases. p53 was not detectable in any myxoma. Most infiltrating cells were cytotoxic T lymphocytes. These data suggest that HSV-1 infection is associated with some cases of sporadic atrial myxoma and that these may result from a chronic inflammatory lesion of endocardium.
Project description:Differential diagnosis between herpes simplex virus (HSV) esophagitis and cytomegalovirus (CMV) esophagitis is challenging because there are many similarities and overlaps between their endoscopic features. The aims of this study were to investigate the implications of the endoscopic findings for the diagnosis of HSV and CMV esophagitis, and to develop a predictive model for differentiating CMV esophagitis from HSV esophagitis.Patients who underwent endoscopic examination and had pathologically-confirmed HSV or CMV esophagitis were eligible. Clinical characteristics and endoscopic features were retrospectively reviewed and categorized. A predictive model was developed based on parameters identified by logistic regression analysis.During the 8-year study period, HSV and CMV esophagitis were diagnosed in 85 and 63 patients, respectively. The endoscopic features of esophagitis were categorized and scored as follows: category 1 (-3 points): discrete ulcers or ulcers with vesicles, bullae, or pseudomembranes, category 2 (-2 points): coalescent or geographic ulcers, category 3 (1 points): ulcers with an uneven base, friability, or with a circumferential distribution, category 4 (2 points): punched-out, serpiginous, or healing ulcers with yellowish exudates. And previous history of transplantation (2 point) was included in the model as a discriminating clinical feature. The optimal cutoff point of the prediction model was 0 (area under receiver operating characteristic curve: 0.967), with positive scores favoring CMV esophagitis. Sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 96.8%, 89.4%, 92.6%, 87.3%, and 97.5%, respectively.The predictive model based on endoscopic and clinical findings appears to be accurate and useful in differentiating CMV esophagitis from HSV esophagitis.
Project description:Infections with herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are a global health burden. Besides painful oral or genital lesions in otherwise healthy subjects, both viruses can cause devastating morbidity and mortality in immune-compromised and immune-immature individuals. The latter are particularly susceptible to a disseminated, life-threatening disease. Neutralizing antibodies (NAb) constitute a correlate of protection from disease, and are promising candidates for the prophylactic or therapeutic treatment of severe HSV infections. However, a clinical vaccine trial suggested that HSV-2 might be more resistant to NAbs than HSV-1. In the present study, we investigated the antiviral efficacy of the well-characterized humanized monoclonal antibody (mAb) hu2c against HSV-2, in a NOD/SCID immunodeficiency mouse model. Despite the fact that hu2c recognizes a fully conserved epitope and binds HSV-1 and HSV-2 glycoprotein B with equal affinity, it was much less effective against HSV-2 in vitro and in NOD/SCID mice. Although intravenous antibody treatment prolonged the survival of HSV-2-infected mice, complete protection from death was not achieved. Our data demonstrate that HSV-2 is more resistant to NAbs than HSV-1, even if the same antibody and antigen are concerned, making the development of a vaccine or therapeutic antibodies more challenging.
Project description:BackgroundGlobally, herpes simplex virus type 2 (HSV-2) infection is the most common cause of genital ulcer disease. Effective prevention strategies for HSV-2 infection are needed to achieve the goals of the World Health Organization global strategy for the prevention and control of sexually transmitted infections.MethodsWe assessed the effectiveness of pericoital tenofovir gel, an antiviral microbicide, in preventing HSV-2 acquisition in a subgroup of 422 HSV-2-negative women enrolled in the Centre for the AIDS Programme of Research in South Africa (CAPRISA) 004 study, a double-blind, randomized, placebo-controlled trial. Incident HSV-2 cases were identified by evidence of seroconversion on an HSV-2 IgG enzyme-linked immunosorbent assay between study enrollment and exit. A confirmatory analysis was performed by Western blot testing.ResultsThe HSV-2 incidence rate was 10.2 cases per 100 person-years (95% confidence interval [CI], 6.8 to 14.7) among 202 women assigned to tenofovir gel, as compared with 21.0 cases per 100 person-years (95% CI, 16.0 to 27.2) among 222 women assigned to placebo gel (incidence rate ratio, 0.49; 95% CI, 0.30 to 0.77; P=0.003). The HSV-2 incidence rate among the 25 women with vaginal tenofovir concentrations of 10,000 ng per milliliter or more was 5.7 cases per 100 person-years, as compared with 15.5 cases per 100 person-years among the 103 women with no detectable vaginal tenofovir (incidence rate ratio, 0.37; 95% CI, 0.04 to 1.51; P=0.14). As confirmed by Western blot testing, there were 16 HSV-2 seroconversions among women assigned to tenofovir gel as compared with 36 among those assigned to the placebo gel (incidence rate ratio, 0.45; 95% CI, 0.23 to 0.82; P=0.005).ConclusionsIn this study in South Africa, pericoital application of tenofovir gel reduced HSV-2 acquisition in women. (Funded by the U.S. Agency for International Development and others; ClinicalTrials.gov number, NCT00441298.).
Project description:Herpes simplex virus type 1 (HSV-1) is a ubiquitous human pathogen that can cause significant morbidity, primarily facial cold sores and herpes simplex encephalitis. Previous studies have shown that a variety of viruses can reprogram the metabolic profiles of host cells to facilitate self-replication. In order to further elucidate the metabolic interactions between the host cell and HSV-1, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze the metabolic profiles in human lung fibroblasts KMB17 infected with HSV-1. The results showed that 654 and 474 differential metabolites were identified in positive and negative ion modes, respectively, and 169 and 114 metabolic pathways that might be altered were screened. These altered metabolites are mainly involved in central carbon metabolism, choline metabolism, amino acid metabolism, purine and pyrimidine metabolism, cholesterol metabolism, bile secretion, and prolactin signaling pathway. Further, we confirmed that the addition of tryptophan metabolite kynurenine promotes HSV-1 replication, and the addition of 25-Hydroxycholesterol inhibits viral replication. Significantly, HSV-1 replication was obviously enhanced in the ChOKα (a choline metabolic rate-limiting enzyme) deficient mouse macrophages. These results indicated that HSV-1 induces the metabolic reprogramming of host cells to promote or resist viral replication. Taken together, these observations highlighted the significance of host cell metabolism in HSV-1 replication, which would help to clarify the pathogenesis of HSV-1 and identify new anti-HSV-1 therapeutic targets.
Project description:To enter its human host, herpes simplex virus type 1 (HSV-1) must overcome the barrier of mucosal surfaces, skin, or cornea. HSV-1 targets keratinocytes during initial entry and establishes a primary infection in the epithelium, which is followed by latent infection of neurons. After reactivation, viruses can become evident at mucocutaneous sites that appear as skin vesicles or mucosal ulcers. How HSV-1 invades skin or mucosa and reaches its receptors is poorly understood. To investigate the invasion route of HSV-1 into epidermal tissue at the cellular level, we established an ex vivo infection model of murine epidermis, which represents the site of primary and recurrent infection in skin. The assay includes the preparation of murine skin. The epidermis is separated from the dermis by dispase II treatment. After floating the epidermal sheets on virus-containing medium, the tissue is fixed and infection can be visualized at various times postinfection by staining infected cells with an antibody against the HSV-1 immediate early protein ICP0. ICP0-expressing cells can be observed in the basal keratinocyte layer already at 1.5 hr postinfection. With longer infection times, infected cells are detected in suprabasal layers, indicating that infection is not restricted to the basal keratinocytes, but the virus spreads to other layers in the tissue. Using epidermal sheets of various mouse models, the infection protocol allows determining the involvement of cellular components that contribute to HSV-1 invasion into tissue. In addition, the assay is suitable to test inhibitors in tissue that interfere with the initial entry steps, cell-to-cell spread and virus production. Here, we describe the ex vivo infection protocol in detail and present our results using nectin-1- or HVEM-deficient mice.
Project description:Neonatal herpes simplex virus type 1 (HSV-1) infections contribute to various neurodevelopmental disabilities and the subsequent long-term neurological sequelae into the adulthood. However, further understanding of fetal brain development and the potential neuropathological effects of the HSV-1 infection are hampered by the limitations of existing neurodevelopmental models due to the dramatic differences between humans and other mammalians. Here we generated in vitro neurodevelopmental disorder models including human induced pluripotent stem cell (hiPSC)-based monolayer neuronal differentiation, three-dimensional (3D) neuroepithelial bud, and 3D cerebral organoid to study fetal brain development and the potential neuropathological effects induced by the HSV-1 infections. Our results revealed that the HSV-1-infected neural stem cells (NSCs) exhibited impaired neural differentiation. HSV-1 infection led to dysregulated neurogenesis in the fetal neurodevelopment. The HSV-1-infected brain organoids modelled the pathological features of the neurodevelopmental disorders in the human fetal brain, including the impaired neuronal differentiation, and the dysregulated cortical layer and brain regionalization. Furthermore, the 3D cerebral organoid model showed that HSV-1 infection promoted the abnormal microglial activation, accompanied by the induction of inflammatory factors, such as TNF-?, IL-6, IL-10, and IL-4. Overall, our in vitro neurodevelopmental disorder models reconstituted the neuropathological features associated with HSV-1 infection in human fetal brain development, providing the causal relationships that link HSV biology with the neurodevelopmental disorder pathogen hypothesis.