Unknown

Dataset Information

0

Rapid and robust optogenetic control of gene expression in Drosophila.


ABSTRACT: Deciphering gene function requires the ability to control gene expression in space and time. Binary systems such as the Gal4/UAS provide a powerful means to modulate gene expression and to induce loss or gain of function. This is best exemplified in Drosophila, where the Gal4/UAS system has been critical to discover conserved mechanisms in development, physiology, neurobiology, and metabolism, to cite a few. Here we describe a transgenic light-inducible Gal4/UAS system (ShineGal4/UAS) based on Magnet photoswitches. We show that it allows efficient, rapid, and robust activation of UAS-driven transgenes in different tissues and at various developmental stages in Drosophila. Furthermore, we illustrate how ShineGal4 enables the generation of gain and loss-of-function phenotypes at animal, organ, and cellular levels. Thanks to the large repertoire of UAS-driven transgenes, ShineGal4 enriches the Drosophila genetic toolkit by allowing in vivo control of gene expression with high temporal and spatial resolutions.

SUBMITTER: di Pietro F 

PROVIDER: S-EPMC8693864 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4575133 | biostudies-literature
| S-EPMC5007438 | biostudies-literature
| S-EPMC6629627 | biostudies-literature
| S-EPMC10555836 | biostudies-literature
| S-EPMC3944926 | biostudies-literature
| S-EPMC6031430 | biostudies-literature
| S-EPMC7015765 | biostudies-literature
| S-EPMC10513317 | biostudies-literature
| S-EPMC7324573 | biostudies-literature
| S-EPMC4140588 | biostudies-literature