Project description:Heparin and heparan sulfate are structurally-related carbohydrates with therapeutic applications in anticoagulation, drug delivery, and regenerative medicine. This study explored the effect of different bioreactor conditions on the production of heparin/heparan sulfate chains via the recombinant expression of serglycin in mammalian cells. Tissue culture flasks and continuously-stirred tank reactors promoted the production of serglycin decorated with heparin/heparan sulfate, as well as chondroitin sulfate, while the serglycin secreted by cells in the tissue culture flasks produced more highly-sulfated heparin/heparan sulfate chains. The serglycin produced in tissue culture flasks was effective in binding and signaling fibroblast growth factor 2, indicating the utility of this molecule in drug delivery and regenerative medicine applications in addition to its well-known anticoagulant activity.
Project description:Carbohydrate chip technology has a great potential for the high-throughput evaluation of carbohydrate-protein interactions. Herein, we report syntheses of novel sulfated oligosaccharides possessing heparin and heparan sulfate partial disaccharide structures, their immobilization on gold-coated chips to prepare array-type Sugar Chips, and evaluation of binding potencies of proteins by surface plasmon resonance (SPR) imaging technology. Sulfated oligosaccharides were efficiently synthesized from glucosamine and uronic acid moieties. Synthesized sulfated oligosaccharides were then easily immobilized on gold-coated chips using previously reported methods. The effectiveness of this analytical method was confirmed in binding experiments between the chips and heparin binding proteins, fibronectin and recombinant human von Willebrand factor A1 domain (rh-vWf-A1), where specific partial structures of heparin or heparan sulfate responsible for binding were identified.
Project description:Heparan sulfates (HS) proteoglycans are commonly found on the cell surface and mediate many processes. Binding of HS ligands is determined by the sulfation code on the HS chain that can be N-/2-O/6-O- or 3-O-sulfated, generating heterogenous sulfation patterns. 3-O sulfated HS (3S-HS) play a role in several (patho)physiological processes such as blood coagulation, viral pathogenesis and binding and internalization of tau in Alzheimer's disease. However, few 3S-HS-specific interactors are known. Thus, our insight into the role of 3S-HS in health and disease is limited, especially in the central nervous system. Using human CSF, we determined the interactome of synthetic HS with defined sulfation patterns. Our affinity-enrichment mass spectrometry studies expand the repertoire of proteins that may interact with (3S-)HS. Validating our approach, ATIII, a known 3S-HS interactor, was found to require GlcA-GlcNS6S3S for binding, similar to what has been reported. Our dataset holds novel, potential HS and 3S-HS protein ligands, that can be explored in future studies focusing on molecular mechanisms that depend on 3S-HS in (patho)physiological conditions.
Project description:Heparan sulfates (HSs) are the main components in the glycocalyx which covers endothelial cells and modulates vascular homeostasis through interactions with multiple Heparan sulfate binding proteins (HSBPs). During sepsis, heparanase increases and induces HS shedding. The process causes glycocalyx degradation, exacerbating inflammation and coagulation in sepsis. The circulating heparan sulfate fragments may serve as a host defense system by neutralizing dysregulated Heparan sulfate binding proteins or pro-inflammatory molecules in certain circumstances. Understanding heparan sulfates and heparan sulfate binding proteins in health and sepsis is critical to decipher the dysregulated host response in sepsis and advance drug development. In this review, we will overview the current understanding of HS in glycocalyx under septic condition and the dysfunctional heparan sulfate binding proteins as potential drug targets, particularly, high mobility group box 1 (HMGB1) and histones. Moreover, several drug candidates based on heparan sulfates or related to heparan sulfates, such as heparanase inhibitors or heparin-binding protein (HBP), will be discussed regarding their recent advances. By applying chemical or chemoenzymatic approaches, the structure-function relationship between heparan sulfates and heparan sulfate binding proteins is recently revealed with structurally defined heparan sulfates. Such homogenous heparan sulfates may further facilitate the investigation of the role of heparan sulfates in sepsis and the development of carbohydrate-based therapy.
Project description:The highly sulfated polysaccharides heparin and heparan sulfate (HS) play key roles in the regulation of physiological and pathophysiological processes. Despite its importance, no molecular structures of free HS have been reported up to now. By combining analytical ultracentrifugation, small angle x-ray scattering, and constrained scattering modeling recently used for heparin, we have analyzed the solution structures for eight purified HS fragments dp6-dp24 corresponding to the predominantly unsulfated GlcA-GlcNAc domains of heparan sulfate. Unlike heparin, the sedimentation coefficient s20,w of HS dp6-dp24 showed a small rotor speed dependence, where similar s20,w values of 0.82-1.26 S (absorbance optics) and 1.05-1.34 S (interference optics) were determined. The corresponding x-ray scattering measurements of HS dp6-dp24 gave radii of gyration RG values from 1.03 to 2.82 nm, cross-sectional radii of gyration RXS values from 0.31 to 0.65 nm, and maximum lengths L from 3.0 to 10.0 nm. These data showed that HS has a longer and more bent structure than heparin. Constrained scattering modeling starting from 5,000 to 12,000 conformationally randomized HS structures gave best fit dp6-dp24 molecular structures that were longer and more bent than their equivalents in heparin. Alternative fits were obtained for HS dp18 and dp24, indicating their higher bending and flexibility. We conclude that HS displays bent conformations that are significantly distinct from that for heparin. The difference is attributed to the different predominant monosaccharide sequence and reduced sulfation of HS, indicating that HS may interact differently with proteins compared with heparin.
Project description:The highly sulfated polysaccharides heparin and heparan sulfate (HS) play key roles in the regulation of physiological and pathophysiological processes. Despite its importance, no molecular structures of free HS have been reported up to now. By combining analytical ultracentrifugation, small angle x-ray scattering, and constrained scattering modeling recently used for heparin, we have analyzed the solution structures for eight purified HS fragments degree of polymerization 6-18 (dp6-dp18) and dp24, corresponding to the predominantly unsulfated GlcA-GlcNAc domains of heparan sulfate. Unlike heparin, the sedimentation coefficient s(20,)(w) of HS dp6-dp24 showed a small rotor speed dependence, where similar s(20,)(w) values of 0.82-1.26 S (absorbance optics) and 1.05-1.34 S (interference optics) were determined. The corresponding x-ray scattering measurements of HS dp6-dp24 gave radius of gyration (R(G)) values from 1.03 to 2.82 nm, cross-sectional radius of gyration (R(XS)) values from 0.31 to 0.65 nm, and maximum lengths (L) from 3.0 to 10.0 nm. These data showed that HS has a longer and more bent structure than heparin. Constrained scattering modeling starting from 5000-8000 conformationally randomized HS structures gave best fit dp6-dp16 molecular structures that were longer and more bent than their equivalents in heparin. No fits were obtained for HS dp18 or dp24, indicating their higher flexibility. We conclude that HS displays an extended bent conformation that is significantly distinct from that for heparin. The difference is attributed to the different predominant monosaccharide sequence and reduced sulfation of HS, indicating that HS may interact differently with proteins compared with heparin.
Project description:Heparan (HS) proteoglycans (HSPGs) are common on the cell surface and mediate many physiological processes. Binding of HSPG ligands is determined by the sulfation code on the heparan sulfate chain and the HS chain can be N-/2-O/6-O- or 3-O-sulfated, generating a heterogenous sulfation pattern. 3-O sulfated HS (3S-HS) have been reported to play a role in several pathological processes such as the coagulation system, viral pathogenesis, or in the binding and internalization of tau in Alzheimer’s disease. Few 3S-HS-specific interactors are known and the role of 3S-HS in health and disease is limited, especially in the central nervous system. Using human CSF as a surrogate for the extracellular compartment of the CNS, we determined the interactome of synthetic heparan sulfate oligosaccharides with defined sulfation patterns. These AE-MS studies significantly expand the proteins that can interact with HS and for which 3O sulfation is required. LRP1 was found as a novel 3S-HS interactor, requiring GlcA-GlcNS6S3S for binding, similar to ATIII. Both interactions were validated via Western blot. Our dataset brings forward new HS and 3S-HS ligands which can be pertinent to unravel molecular mechanisms dependent on 3S-HS in (patho)physiological conditions.
Project description:Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.
Project description:V-set and immunoglobulin domain-containing 4 (VSIG4) is a complement receptor of the immunoglobulin superfamily that is specifically expressed on tissue resident macrophages, and its many reported functions and binding partners suggest a complex role in immune function. VSIG4 is reported to have a role in immune surveillance as well as in modulating diverse disease phenotypes such as infections, autoimmune conditions, and cancer. However, the mechanism(s) governing VSIG4's complex, context-dependent role in immune regulation remains elusive. Here, we identify cell surface and soluble glycosaminoglycans, specifically heparan sulfates, as novel binding partners of VSIG4. We demonstrate that genetic deletion of heparan sulfate synthesis enzymes or cleavage of cell-surface heparan sulfates reduced VSIG4 binding to the cell surface. Furthermore, binding studies demonstrate that VSIG4 interacts directly with heparan sulfates, with a preference for highly sulfated moieties and longer glycosaminoglycan chains. To assess the impact on VSIG4 biology, we show that heparan sulfates compete with known VSIG4 binding partners C3b and iC3b. Furthermore, mutagenesis studies indicate that this competition occurs through overlapping binding epitopes for heparan sulfates and complement on VSIG4. Together these data suggest a novel role for heparan sulfates in VSIG4-dependent immune modulation.