Project description:The efficacy and safety of betamethsone dipropionate 0.05% with salicylic acid 2% scalp lotion was evaluated in 60 patients with moderate to severe scalp psoriasis. Out of 120 patients with scalp psoriasis 60 patients received PUVASOL alone and 60 patients received PUVASOL alongwith lotion 0.05% betamethasone dipropionate with 2% salicylic acid scalp application for 3 weeks. The erythema, induration, scales and pruritus steadily improved in patients throughout the 3 weeks treatment course with betamethasone dipropionate with salicylic acid scalp application. At the end of therapy 84.3% of those patients receiving PUVASOL and betamethasone dipropionate-salicylic acid combination had 75% improvement of their scalp psoriasis versus 34.9% of those patients using PUVASOL alone. Complete clearing of the scalp was seen in 35% patients receiving therapy with topical betamethasone-salicylic acid and 11.6% with PUVASOL alone. Local side effects were primarily burning and stinging in 5 (83%) cases treated with topical betamethasone salicylic acid scalp application and 1 (1.6%) receiving PUVASOL alone. Combined therapy with PUVASOL and topical betamethasone dispropionate 0.05% with salicyclic acid 2% application appears to be safe and an effective treatment for scalp psoriasis.
Project description:Scalp psoriasis shows a variable clinical spectrum and in many cases poses a great therapeutic challenge. However, it remains unknown whether the immune response of scalp psoriasis differs from understood pathomechanisms of psoriasis in other skin areas. We sought to determine the cellular and molecular phenotype of scalp psoriasis by performing a comparative analysis of scalp and skin using lesional and nonlesional samples from 20 Caucasian subjects with untreated moderate to severe psoriasis and significant scalp involvement and 10 control subjects without psoriasis. Our results suggest that even in the scalp, psoriasis is a disease of the inter-follicular skin. The immune mechanisms that mediate scalp psoriasis were found to be similar to those involved in skin psoriasis. However, the magnitude of dysregulation, number of differentially expressed genes, and enrichment of the psoriatic genomic fingerprint were more prominent in skin lesions. Furthermore, the scalp transcriptome showed increased modulation of several gene-sets, particularly those induced by interferon-gamma, compared with that of skin psoriasis, which was mainly associated with activation of TNF?/L-17/IL-22-induced keratinocyte response genes. We also detected differences in expression of gene-sets involving negative regulation, epigenetic regulation, epidermal differentiation, and dendritic cell or Th1/Th17/Th22-related T-cell processes.
Project description:Scalp psoriasis shows a variable clinical spectrum and in many cases poses a great therapeutic challenge. However, it remains unknown whether the immune response of scalp psoriasis differs from understood pathomechanisms of psoriasis on other skin areas. We sought to determine the cellular and mollecular phenotype of scalp psoriasis by performing a comparative analysis of scalp vs skin using lesional and nonlesional samples from 20 Caucasian subjects with untreated moderate to severe psoriasis and significant scalp involvement, and 10 control subjects without psoriasis. Our results suggest that even in the scalp psoriasis is a disease of the inter-follicular skin. The immune mechanisms that mediate scalp psoriasis were found to be similar to those involved in skin psoriasis. However, the magnitude of dysregulation, number of differentially expressed genes, and enrichment of the psoriatic genomic fingerprinting were more prominent in skin lesions. Furthermore, the scalp transcriptome showed increased modulation of several gene-sets, particularly those induced by interferon-gamma, compared with skin psoriasis which was mainly associated with activation of TNFâµ/L-17/IL-22-induced keratinocyte response genes. We also detected differences in expression of gene-sets involving negative regulation, epigenetic regulation, epidermal differentiation, and dendritic cell or Th1/Th17/Th22-related T-cell processes. To define the transcriptomic profile of scalp skin, punch biopsies (6 mm diameter) were obtained from 20 Caucasian patients with untreated moderate to severe psoriasis with significative scalp involvement and 10 control subjects without psoriasis (N). Lesional (LS) samples were isolated from the infiltrated border of a plaque of psoriasis. Non lesional (NL) samples were taken from scalp areas with no visible psoriasis between the infiltrated plaques.
Project description:Scalp psoriasis shows a variable clinical spectrum and in many cases poses a great therapeutic challenge. However, it remains unknown whether the immune response of scalp psoriasis differs from understood pathomechanisms of psoriasis on other skin areas. We sought to determine the cellular and mollecular phenotype of scalp psoriasis by performing a comparative analysis of scalp vs skin using lesional and nonlesional samples from 20 Caucasian subjects with untreated moderate to severe psoriasis and significant scalp involvement, and 10 control subjects without psoriasis. Our results suggest that even in the scalp psoriasis is a disease of the inter-follicular skin. The immune mechanisms that mediate scalp psoriasis were found to be similar to those involved in skin psoriasis. However, the magnitude of dysregulation, number of differentially expressed genes, and enrichment of the psoriatic genomic fingerprinting were more prominent in skin lesions. Furthermore, the scalp transcriptome showed increased modulation of several gene-sets, particularly those induced by interferon-gamma, compared with skin psoriasis which was mainly associated with activation of TNF↵/L-17/IL-22-induced keratinocyte response genes. We also detected differences in expression of gene-sets involving negative regulation, epigenetic regulation, epidermal differentiation, and dendritic cell or Th1/Th17/Th22-related T-cell processes.
Project description:During the 28th Congress of the European Academy of Dermatology and Venereology (EADV) held in Madrid in October 2019, an industry hub was dedicated to the long-term management of psoriasis. Psoriasis is a systemic inflammatory disease primarily involving the skin that affects up to 4% of the European population, the majority of whom present with chronic plaque psoriasis. Topical therapies are well established in the first-line treatment of psoriatic plaque flares. Nevertheless, as psoriasis is a chronic disease, long-term control should be considered. The aim of the session was to provide expert opinion on the benefit of long-term maintenance therapy in chronic plaque psoriasis and introduce the concept of pro-active management to decrease the number of relapses and improve patient quality of life. The current guidelines and recommendations were reviewed, as well as the available data on published clinical trials. There is still an important role for topical therapy in psoriasis and current recommendations suggest a maintenance regimen for psoriasis. Adherence optimization and proactive management of relapse can be key factors for obtaining clinical outcomes in topical long-term therapy. Calcipotriol/betamethasone dipropionate foam is the only topical formulation with long-term data as a twice-weekly proactive treatment approach for up to 52 weeks for chronic plaque psoriasis.
Project description:Psoriasis of the scalp, face, intertriginous areas, genitals, hands, feet, and nails is often underdiagnosed, and disease management can be challenging. Despite the small surface area commonly affected by psoriasis in these locations, patients have disproportionate levels of physical impairment and emotional distress. Limitations in current disease severity indices do not fully capture the impact of disease on a patient's quality of life, and, combined with limitations in current therapies, many patients do not receive proper or adequate care. In this review, we discuss the clinical manifestations of psoriasis in these less commonly diagnosed areas and its impact on patient quality of life. We also examine clinical studies evaluating the effectiveness of therapies on psoriasis in these regions. This article highlights the need to individualize treatment strategies for psoriasis based on the area of the body that is affected and the emerging role of biologic therapy in this regard.
Project description:In Part One of this two-part series, we discussed skin physiology and anatomy as well as generalities concerning topical analgesics. This modality of therapy has lesser side effects and drug-drug interactions, and patients tolerate this form of therapy better than many oral options. Unfortunately, this modality is not used as often as it could be in chronic pain states, such as that from neuropathic pain. Part Two discusses specific therapies, local anesthetics, and other drugs, as well as how a clinician might use specific aspects of a patient's neuropathic pain presentation to help guide them in the selection of a topical agent.
Project description:Systemic antibodies targeting tumor necrosis factor-α (TNF-α) and interleukin-17A (IL-17A) are effective in plaque psoriasis. Despite their popularity, safety concerns pose a challenge for systemic biologics. While anti-TNF-α and anti-IL-17A antibodies effectively inhibit respective proteins, we hypothesize that an approach based on local silencing of an upstream target such as NFKBIZ can be advantageous for treating psoriasis. However, effective delivery of small interfering RNA (siRNA) into the skin is a substantial hurdle due to skin's barrier function and poor stability of siRNA. Using ionic liquids as an enabling technology, we report on the effective delivery of NFKBIZ siRNA into the skin and its therapeutic efficacy in a psoriasis model. Treatment with IL-siRNA suppressed aberrant gene expression and resulted in down-regulation of psoriasis-related signals including TNF-α and IL-17A. These results provide a framework for a topical delivery platform for siRNA.
Project description:In this study, five cyanobacteria strains (Alkalinema aff. pantanalense LEGE15481, Cyanobium gracile LEGE12431, Nodosilinea (Leptolyngbya) antarctica LEGE13457, Cuspidothrix issatschenkoi LEGE03282 and Leptolyngbya-like sp. LEGE13412) from the Blue Biotechnology and Ecotoxicology Culture Collection (LEGE CC) of CIIMAR were explored for their biotechnological potential in the treatment of psoriasis. Different extracts were characterized for their pigment profile by HPLC-PDA. The antioxidant potential of the extracts was assessed against the superoxide anion radical (O2•-). Their anti-inflammatory and antiproliferative potential was assessed in vitro using the macrophages RAW 264.7 and the human keratinocytes HaCaT as cell-line models, respectively. Terrestrial and freshwater strains presented the highest carotenoid content (33193-63926 μg/g dry extract), with all-trans-β-carotene, zeaxanthin, echinenone and lutein derivatives being the most abundant carotenoids. Acetone was the most effective solvent for pigment extraction. The acetone extracts presented the lowest IC50 values (0.29-0.38 mg dry extract/mL) regarding O2•- scavenging, and revealed anti-inflammatory potential, with N. antarctica LEGE13457, A. pantanalense LEGE15481 and Leptolyngbya-like sp. LEGE13412 reducing the nitric oxide (NO) in RAW 264.7 cell culture medium in about 25% (p < 0.05). With the exception of A. pantanalense LEGE15481, all the extracts significantly reduced keratinocyte proliferation (p < 0.05), demonstrating a selective toxicity among the different cell lines. Overall, Leptolyngbya-like sp. LEGE13412 and N. antarctica LEGE13457 seem promising for further exploitation in the framework of psoriasis, due to their antioxidant, anti-inflammatory and antiproliferative potential.