Unknown

Dataset Information

0

A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex-Cdh1 and cyclin A-Cdk2 during cell cycle progression.


ABSTRACT: Periodic activity of the anaphase-promoting complex (APC) ubiquitin ligase determines progression through multiple cell cycle transitions by targeting cell cycle regulators for destruction. At the G(1)/S transition, phosphorylation-dependent dissociation of the Cdh1-activating subunit inhibits the APC, allowing stabilization of proteins required for subsequent cell cycle progression. Cyclin-dependent kinases (CDKs) that initiate and maintain Cdh1 phosphorylation have been identified. However, the issue of which cyclin-CDK complexes are involved has been a matter of debate, and the mechanism of how cyclin-CDKs interact with APC subunits remains unresolved. Here we substantiate the evidence that mammalian cyclin A-Cdk2 prevents unscheduled APC reactivation during S phase by demonstrating its periodic interaction with Cdh1 at the level of endogenous proteins. Moreover, we identified a conserved cyclin-binding motif within the Cdh1 WD-40 domain and show that its disruption abolished the Cdh1-cyclin A-Cdk2 interaction, eliminated Cdh1-associated histone H1 kinase activity, and impaired Cdh1 phosphorylation by cyclin A-Cdk2 in vitro and in vivo. Overexpression of cyclin binding-deficient Cdh1 stabilized the APC-Cdh1 interaction and induced prolonged cell cycle arrest at the G(1)/S transition. Conversely, cyclin binding-deficient Cdh1 lost its capability to support APC-dependent proteolysis of cyclin A but not that of other APC substrates such as cyclin B and securin Pds1. Collectively, these data provide a mechanistic explanation for the mutual functional interplay between cyclin A-Cdk2 and APC-Cdh1 and the first evidence that Cdh1 may activate the APC by binding specific substrates.

SUBMITTER: Sorensen CS 

PROVIDER: S-EPMC87003 | biostudies-literature | 2001 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex-Cdh1 and cyclin A-Cdk2 during cell cycle progression.

Sørensen C S CS   Lukas C C   Kramer E R ER   Peters J M JM   Bartek J J   Lukas J J  

Molecular and cellular biology 20010601 11


Periodic activity of the anaphase-promoting complex (APC) ubiquitin ligase determines progression through multiple cell cycle transitions by targeting cell cycle regulators for destruction. At the G(1)/S transition, phosphorylation-dependent dissociation of the Cdh1-activating subunit inhibits the APC, allowing stabilization of proteins required for subsequent cell cycle progression. Cyclin-dependent kinases (CDKs) that initiate and maintain Cdh1 phosphorylation have been identified. However, th  ...[more]

Similar Datasets

| S-EPMC4615124 | biostudies-literature
| S-EPMC9732331 | biostudies-literature
| S-EPMC3305350 | biostudies-other
| S-EPMC2441674 | biostudies-literature
| S-EPMC2836972 | biostudies-literature
| S-EPMC7846991 | biostudies-literature
| S-EPMC2899685 | biostudies-literature
| S-EPMC2787194 | biostudies-literature
| S-EPMC153024 | biostudies-literature
| S-EPMC7660922 | biostudies-literature