Weaving Mitochondrial DNA and Y-Chromosome Variation in the Panamanian Genetic Canvas.
Ontology highlight
ABSTRACT: The Isthmus of Panama was a crossroads between North and South America during the continent's first peopling (and subsequent movements) also playing a pivotal role during European colonization and the African slave trade. Previous analyses of uniparental systems revealed significant sex biases in the genetic history of Panamanians, as testified by the high proportions of Indigenous and sub-Saharan mitochondrial DNAs (mtDNAs) and by the prevalence of Western European/northern African Y chromosomes. Those studies were conducted on the general population without considering any self-reported ethnic affiliations. Here, we compared the mtDNA and Y-chromosome lineages of a new sample collection from 431 individuals (301 males and 130 females) belonging to either the general population, mixed groups, or one of five Indigenous groups currently living in Panama. We found different proportions of paternal and maternal lineages in the Indigenous groups testifying to pre-contact demographic events and genetic inputs (some dated to Pleistocene times) that created genetic structure. Then, while the local mitochondrial gene pool was marginally involved in post-contact admixtures, the Indigenous Y chromosomes were differentially replaced, mostly by lineages of western Eurasian origin. Finally, our new estimates of the sub-Saharan contribution, on a more accurately defined general population, reduce an apparent divergence between genetic and historical data.
Project description:A Japanese resident bird, Phalacrocorax carbo hanedae (Japanese name: Kawa-u), was threatened with extinction due to deterioration of its habitat in the 1970s, but the population has since recovered thanks to environmental protection measures. This study analyzed the genetic diversity of 18 Kawa-u individuals living in the basins of the Abe and Warashina rivers in Shizuoka Prefecture, Japan. We obtained seven haplotypes of mitochondrial D-loop sequences and compared them with 49 European P. carbo D-loop haplotypes. We identified four new haplotypes but no clear genetic evidence distinguishing the Kawa-u as a distinct subspecies of P. carbo. Our results suggest the need for further surveillance of the P. carbo genetic lineage, regardless of the geographical distribution.
Project description:BACKGROUND: Central Asia and the Indian subcontinent represent an area considered as a source and a reservoir for human genetic diversity, with many markers taking root here, most of which are the ancestral state of eastern and western haplogroups, while others are local. Between these two regions, Terai (Nepal) is a pivotal passageway allowing, in different times, multiple population interactions, although because of its highly malarial environment, it was scarcely inhabited until a few decades ago, when malaria was eradicated. One of the oldest and the largest indigenous people of Terai is represented by the malaria resistant Tharus, whose gene pool could still retain traces of ancient complex interactions. Until now, however, investigations on their genetic structure have been scarce mainly identifying East Asian signatures. RESULTS: High-resolution analyses of mitochondrial-DNA (including 34 complete sequences) and Y-chromosome (67 SNPs and 12 STRs) variations carried out in 173 Tharus (two groups from Central and one from Eastern Terai), and 104 Indians (Hindus from Terai and New Delhi and tribals from Andhra Pradesh) allowed the identification of three principal components: East Asian, West Eurasian and Indian, the last including both local and inter-regional sub-components, at least for the Y chromosome. CONCLUSION: Although remarkable quantitative and qualitative differences appear among the various population groups and also between sexes within the same group, many mitochondrial-DNA and Y-chromosome lineages are shared or derived from ancient Indian haplogroups, thus revealing a deep shared ancestry between Tharus and Indians. Interestingly, the local Y-chromosome Indian component observed in the Andhra-Pradesh tribals is present in all Tharu groups, whereas the inter-regional component strongly prevails in the two Hindu samples and other Nepalese populations.The complete sequencing of mtDNAs from unresolved haplogroups also provided informative markers that greatly improved the mtDNA phylogeny and allowed the identification of ancient relationships between Tharus and Malaysia, the Andaman Islands and Japan as well as between India and North and East Africa. Overall, this study gives a paradigmatic example of the importance of genetic isolates in revealing variants not easily detectable in the general population.
Project description:BackgroundMajor population movements, social structure, and caste endogamy have influenced the genetic structure of Indian populations. An understanding of these influences is increasingly important as gene mapping and case-control studies are initiated in South Indian populations.ResultsWe report new data on 155 individuals from four Tamil caste populations of South India and perform comparative analyses with caste populations from the neighboring state of Andhra Pradesh. Genetic differentiation among Tamil castes is low (RST = 0.96% for 45 autosomal short tandem repeat (STR) markers), reflecting a largely common origin. Nonetheless, caste- and continent-specific patterns are evident. For 32 lineage-defining Y-chromosome SNPs, Tamil castes show higher affinity to Europeans than to eastern Asians, and genetic distance estimates to the Europeans are ordered by caste rank. For 32 lineage-defining mitochondrial SNPs and hypervariable sequence (HVS) 1, Tamil castes have higher affinity to eastern Asians than to Europeans. For 45 autosomal STRs, upper and middle rank castes show higher affinity to Europeans than do lower rank castes from either Tamil Nadu or Andhra Pradesh. Local between-caste variation (Tamil Nadu RST = 0.96%, Andhra Pradesh RST = 0.77%) exceeds the estimate of variation between these geographically separated groups (RST = 0.12%). Low, but statistically significant, correlations between caste rank distance and genetic distance are demonstrated for Tamil castes using Y-chromosome, mtDNA, and autosomal data.ConclusionGenetic data from Y-chromosome, mtDNA, and autosomal STRs are in accord with historical accounts of northwest to southeast population movements in India. The influence of ancient and historical population movements and caste social structure can be detected and replicated in South Indian caste populations from two different geographic regions.
Project description:In order to survey the evolutionary history and impact of historical events on the genetic structure of Iranian people, the HV2 region of 141 mtDNA sequences related to six Iranian populations were analyzed. Slight and non-significant FST distances among the Central-western Persian speaking populations of Iran testify to the common origin of these populations from one proto-population. Mismatch distribution suggests that this proto-Iranian population started to colonize Iran about 30000 years ago which is almost consistent with the timing of arrival and colonization of western Asia by the anatomically modern human. Star-like haplotype network structures, significant and negative Tajima's D (D=-2.08, P<0.05) and unimodal mismatch distributions support the genetic effects of this expansion. Iranian populations presented mtDNA lineages that clearly belong to the European gene pool (i.e. H and U), while the Mashhad population was characterized by the presence of eastern and central Asian mtDNA lineages (i.e. M, B and D). Furthermore, the low diversity (h=0.428) observed in Mashhad may indicated the presence of inbreeding, drift or bottleneck events. The application of Monmonier's maximum differences algorithm revealed a geographic zone of genetic discontinuity between the Arab people of Khuzestan and rest of Iranian populations. Geographical factors, in cooperation with cultural/linguistic differences, are the main reasons for this differentiation. The lack of a sharp geographical or ethno-linguistic structure for mtDNA HV2 sequence diversity was statistically supported by AMOVA and Mantel (r=0.19, P<0.05) tests.
Project description:BackgroundThe history of pig populations in Africa remains controversial due to insufficient evidence from archaeological and genetic data. Previously, a Western ancestry for West African pigs was reported based on loci that are involved in the determination of coat color. We investigated the genetic diversity of Nigerian indigenous pigs (NIP) by simultaneously analyzing variation in mitochondrial DNA (mtDNA), Y-chromosome sequence and the melanocortin receptor 1 (MC1R) gene.ResultsMedian-joining network analysis of mtDNA D-loop sequences from 201 NIP and previously characterized loci clustered NIP with populations from the West (Europe/North Africa) and East/Southeast Asia. Analysis of partial sequences of the Y-chromosome in 57 Nigerian boars clustered NIP into lineage HY1. Finally, analysis of MC1R in 90 NIP resulted in seven haplotypes, among which the European wild boar haplotype was carried by one individual and the European dominant black by most of the other individuals (93%). The five remaining unique haplotypes differed by a single synonymous substitution from European wild type, European dominant black and Asian dominant black haplotypes.ConclusionsOur results demonstrate a European and East/Southeast Asian ancestry for NIP. Analyses of MC1R provide further evidence. Additional genetic analyses and archaeological studies may provide further insights into the history of African pig breeds. Our findings provide a valuable resource for future studies on whole-genome analyses of African pigs.
Project description:Mitochondrial DNA copy number (mtDNA CN) has been shown to be highly heritable and associated with traits of interest in humans. However, studies are lacking in the literature for livestock species such as beef cattle. In this study, 2,371 individuals from a crossbred beef population comprising the Germplasm Evaluation program from the U.S. Meat Animal Research Center had samples of blood, leucocyte, or semen collected for low-pass sequencing (LPS) that resulted in both nuclear DNA (nuDNA) and mitochondrial DNA (mtDNA) sequence reads. Mitochondrial DNA CN was estimated based on the ratio of mtDNA to nuDNA coverages. Genetic parameters for mtDNA CN were estimated from an animal model based on a genomic relationship matrix (~87K SNP from the nuDNA). Different models were used to test the effects of tissue, sex, age at sample collection, heterosis, and breed composition. Maternal effects, assessed by fitting a maternal additive component and by fitting eleven SNP on the mtDNA, were also obtained. As previously reported, mtDNA haplotypes were used to classify individuals into Taurine haplogroups (T1, T2, T3/T4, and T5). Estimates of heritability when fitting fixed effects in addition to the intercept were moderate, ranging from 0.11 to 0.31 depending on the model. From a model ignoring contemporary group, semen samples had the lowest mtDNA CN, as expected, followed by blood and leucocyte samples (P ≤ 0.001). The effect of sex and the linear and quadratic effects of age were significant (P ≤ 0.02) depending on the model. When significant, females had greater mtDNA CN than males. The effects of heterosis and maternal heterosis were not significant (P ≥ 0.47). The estimates of maternal and mtDNA heritability were near zero (≤0.03). Most of the samples (98%) were classified as haplogroup T3. Variation was observed in the mtDNA within Taurine haplogroups, which enabled the identification of 24 haplotypes. These results suggest that mtDNA CN is under nuclear genetic control and would respond favorably to selection.
Project description:Comparisons of polymorphism patterns between distantly related species are essential in order to determine their generality. However, most work on the genus Drosophila has been done only with species of the subgenus Sophophora. In the present work, we have sequenced one intron and surrounding coding sequences of 6 X-linked genes (chorion protein s36, elav, fused, runt, suppressor of sable and zeste) from 21 strains of wild-type Drosophila virilis (subgenus Drosophila). From these data, we have estimated the average level of DNA polymorphism, inferred the effective population size and population structure of this species, and compared the results with those obtained for other Drosophila species. There is no reduction in variation at two loci close to the centromeric heterochromatin, in contrast to Drosophila melanogaster.
Project description:X-chromosome inactivation (XCI), i.e., the inactivation of one of the female X chromosomes, restores equal expression of X-chromosomal genes between females and males. However, ~10% of genes show variable degrees of escape from XCI between females, although little is known about the causes of variable XCI. Using a discovery data-set of 1867 females and 1398 males and a replication sample of 3351 females, we show that genetic variation at three autosomal loci is associated with female-specific changes in X-chromosome methylation. Through cis-eQTL expression analysis, we map these loci to the genes SMCHD1/METTL4, TRIM6/HBG2, and ZSCAN9. Low-expression alleles of the loci are predominantly associated with mild hypomethylation of CpG islands near genes known to variably escape XCI, implicating the autosomal genes in variable XCI. Together, these results suggest a genetic basis for variable escape from XCI and highlight the potential of a population genomics approach to identify genes involved in XCI.
Project description:The propulsion of sperm cells via movement of the flagellum is of vital importance for successful fertilization. While the exact mechanism of energy production for this movement varies between species, in avian species energy is thought to come predominantly from the mitochondria located in the sperm midpiece. Larger midpieces may contain more mitochondria, which should enhance the energetic capacity and possibly promote mobility. Due to an inversion polymorphism on their sex chromosome TguZ, zebra finches (Taeniopygia guttata castanotis) exhibit large within-species variation in sperm midpiece length, and those sperm with the longest midpieces swim the fastest. Here, we test through quantitative real-time PCR in zebra finch ejaculates whether the inversion genotype has an effect on the copy number of mitochondrial DNA (mtDNA). We find that zebra finches carrying the derived allele (correlated with longer sperm midpieces) have more copies of the mtDNA in their ejaculates than those homozygous for the ancestral allele (shorter midpieces). We suggest downstream effects of mtDNA copy number variation on the rate of adenosine triphosphate production, which in turn may influence sperm swimming speed and fertilization success. Central components of gamete energy metabolism may thus be the proximate cause for a fitness-relevant genetic polymorphism, stabilizing a megabase-scale inversion at an intermediate allele frequency in the wild.
Project description:Several lines of evidence suggest that the presence of the Y chromosome influences DNA methylation of autosomal loci. To better understand the impact of the Y chromosome on autosomal DNA methylation patterns and its contribution to sex bias in methylation, we identified Y chromosome dependent differentially methylated regions (yDMRs) using whole-genome bisulfite sequencing methylation data from livers of mice with different combinations of sex-chromosome complement and gonadal sex. Nearly 90% of the autosomal yDMRs mapped to transposable elements (TEs) and most of them had lower methylation in XY compared to XX or XO mice. Follow-up analyses of four reporter autosomal yDMRs showed that Y-dependent methylation levels were consistent across most somatic tissues but varied in strains with different origins of the Y chromosome, suggesting that genetic variation in the Y chromosome influenced methylation levels of autosomal regions. Mice lacking the q-arm of the Y chromosome (B6.NPYq-2) as well as mice with a loss-of-function mutation in Kdm5d showed no differences in methylation levels compared to wild type mice. In conclusion, the Y-linked modifier of TE methylation is likely to reside on the short arm of Y chromosome and further studies are required to identify this gene.