Unknown

Dataset Information

0

Lactobacillus lactis and Pediococcus pentosaceus-driven reprogramming of gut microbiome and metabolome ameliorates the progression of non-alcoholic fatty liver disease.


ABSTRACT:

Background

Although microbioa-based therapies have shown putative effects on the treatment of non-alcoholic fatty liver disease (NAFLD), it is not clear how microbiota-derived metabolites contribute to the prevention of NAFLD. We explored the metabolomic signature of Lactobacillus lactis and Pediococcus pentosaceus in NAFLD mice and its association in NAFLD patients.

Methods

We used Western diet-induced NAFLD mice, and L. lactis and P. pentosaceus were administered to animals in the drinking water at a concentration of 109 CFU/g for 8 weeks. NAFLD severity was determined based on liver/body weight, pathology and biochemistry markers. Caecal samples were collected for the metagenomics by 16S rRNA sequencing. Metabolite profiles were obtained from caecum, liver and serum. Human stool samples (healthy control [n = 22] and NAFLD patients [n = 23]) were collected to investigate clinical reproducibility for microbiota-derived metabolites signature and metabolomics biomarker.

Results

L. lactis and P. pentosaceus supplementation effectively normalized weight ratio, NAFLD activity score, biochemical markers, cytokines and gut-tight junction. While faecal microbiota varied according to the different treatments, key metabolic features including short chain fatty acids (SCFAs), bile acids (BAs) and tryptophan metabolites were analogously restored by both probiotic supplementations. The protective effects of indole compounds were validated with in vitro and in vivo models, including anti-inflammatory effects. The metabolomic signatures were replicated in NAFLD patients, accompanied by the comparable levels of Firmicutes/Bacteroidetes ratio, which was significantly higher (4.3) compared with control (0.6). Besides, the consequent biomarker panel with six stool metabolites (indole, BAs, and SCFAs) showed 0.922 (area under the curve) in the diagnosis of NAFLD.

Conclusions

NAFLD progression was robustly associated with metabolic dys-regulations in the SCFAs, bile acid and indole compounds, and NAFLD can be accurately diagnosed using the metabolites. L. lactis and P. pentosaceus ameliorate NAFLD progression by modulating gut metagenomic and metabolic environment, particularly tryptophan pathway, of the gut-liver axis.

SUBMITTER: Yu JS 

PROVIDER: S-EPMC8715831 | biostudies-literature | 2021 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Lactobacillus lactis and Pediococcus pentosaceus-driven reprogramming of gut microbiome and metabolome ameliorates the progression of non-alcoholic fatty liver disease.

Yu Jeong Seok JS   Youn Gi Soo GS   Choi Jieun J   Kim Chang-Ho CH   Kim Byung Yong BY   Yang Seung-Jo SJ   Lee Je Hee JH   Park Tae-Sik TS   Kim Byoung Kook BK   Kim Yeon Bee YB   Roh Seong Woon SW   Min Byeong Hyun BH   Park Hee Jin HJ   Yoon Sang Jun SJ   Lee Na Young NY   Choi Ye Rin YR   Kim Hyeong Seob HS   Gupta Haripriya H   Sung Hotaik H   Han Sang Hak SH   Suk Ki Tae KT   Lee Do Yup DY  

Clinical and translational medicine 20211201 12


<h4>Background</h4>Although microbioa-based therapies have shown putative effects on the treatment of non-alcoholic fatty liver disease (NAFLD), it is not clear how microbiota-derived metabolites contribute to the prevention of NAFLD. We explored the metabolomic signature of Lactobacillus lactis and Pediococcus pentosaceus in NAFLD mice and its association in NAFLD patients.<h4>Methods</h4>We used Western diet-induced NAFLD mice, and L. lactis and P. pentosaceus were administered to animals in t  ...[more]

Similar Datasets

| S-EPMC10555773 | biostudies-literature
| S-EPMC3568594 | biostudies-literature
| S-EPMC6780645 | biostudies-literature
| S-EPMC7524267 | biostudies-literature
| S-EPMC3416253 | biostudies-literature
| S-EPMC3873615 | biostudies-literature
| S-EPMC9022535 | biostudies-literature
| S-EPMC7885583 | biostudies-literature
| S-EPMC7082465 | biostudies-literature
| S-EPMC9294475 | biostudies-literature