Project description:Nuclear speckles (NSs) are nuclear biomolecular condensates that are postulated to arise through liquid-liquid phase separation (LLPS), although the detailed underlying forces driving NS formation remain elusive. SRRM2 and SON are 2 non-redundant scaffold proteins for NSs. How each individual protein governs assembly of NS protein network and the functional relationship between SRRM2 and SON are largely unknown. Here, we uncover immiscible multiphase of SRRM2 and SON within NSs. SRRM2 and SON are functionally independent, specifically regulating alternative splicing of subsets of mRNA targets, respectively. We further uncover that SRRM2 forms multicomponent liquid phase in cells to drive NS subcompartmentalization, which is reliant on homotypic interaction and heterotypic non-selective protein-RNA complex coacervation-driven multicomponent LLPS. SRRM2 RS domains form high-order oligomers, and can be replaced by oligomerizable synthetic modules, the serine residues within the RS domains, however, play an irreplaceable role in fine-tuning the liquidity of NSs.
Project description:Liquid-liquid phase separation is considered a generic approach to organize membrane-less compartments, enabling the dynamic regulation of phase-separated assemblies to be investigated and pivotal roles of protein posttranslational modifications to be demonstrated. By surveying the subcellular localizations of human deubiquitylases, USP42 was identified to form nuclear punctate structures that are associated with phase separation properties. Bioinformatic analysis demonstrated that the USP42 C-terminal sequence was intrinsically disordered, which was further experimentally confirmed to confer phase separation features. USP42 is distributed to SC35-positive nuclear speckles in a positively charged C-terminal residue- and enzymatic activity-dependent manner. Notably, USP42 directs the integration of the spliceosome component PLRG1 into nuclear speckles, and its depletion interferes with the conformation of SC35 foci. Functionally, USP42 downregulation deregulates multiple mRNA splicing events and leads to deterred cancer cell growth, which is consistent with the impact of PLRG1 repression. Finally, USP42 expression is strongly correlated with that of PLRG1 in non-small-cell lung cancer samples and predicts adverse prognosis in overall survival. As a deubiquitylase capable of dynamically guiding nuclear speckle phase separation and mRNA splicing, USP42 inhibition presents a novel anticancer strategy by targeting phase separation.
Project description:Phase separation can produce local structures with specific functionality in the cell, and in the nucleus, this can lead to chromatin reorganization. Microrchidia 3 (MORC3) is a human ATPase that has been implicated in autoimmune disorders and cancer. Here, we show that MORC3 forms phase-separated condensates with liquid-like properties in the cell nucleus. Fluorescence live-cell imaging reveals that the MORC3 condensates are heterogeneous and undergo dynamic morphological changes during the cell cycle. The ATPase activity of MORC3 drives its phase separation in vitro and requires DNA binding and releasing the MORC3 CW domain-dependent autoinhibition through association with histone H3. Our findings suggest a mechanism by which the ATPase function of MORC3 mediates MORC3 nuclear compartmentalization.
Project description:Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive. Following our recent finding that pan-retroviruses employ Zn for NC-mediated LLPS for virus assembly, we present a pan-virus bioinformatics and literature meta-analysis study identifying metal-based mechanisms linking virus-induced BMCs to neurodegenerative disease processes. We discover that conserved degree and placement of PrLDs juxtaposing metal-regulated RBDs are associated with disease-causing prion-like proteins and are common features of viral proteins responsible for virus capsid assembly and structure. Virus infections both modulate gene expression of metalloproteins and interfere with metal homeostasis, representing an additional virus strategy impeding physiological and cellular antiviral responses. Our analyses reveal that metal-coordinated virus NC protein PrLDs initiate LLPS that nucleate pan-virus assembly and contribute to their persistence as cell-free infectious aerosol droplets. Virus aerosol droplets and insoluble neurological disease aggregates should be eliminated by physiological or environmental metals that outcompete PrLD-bound metals. While environmental metals can control virus spreading via aerosol droplets, therapeutic interference with metals or metalloproteins represent additional attractive avenues against pan-virus infection and virus-exacerbated neurological diseases.
Project description:Liquid-liquid phase separation (LLPS) of proteins and RNAs has emerged as the driving force underlying the formation of membrane-less organelles. Such biomolecular condensates have various biological functions and have been linked to disease. The protein Fused in Sarcoma (FUS) undergoes LLPS and mutations in FUS have been causally linked to the motor neuron disease Amyotrophic Lateral Sclerosis (ALS-FUS). LLPS followed by aggregation of cytoplasmic FUS has been proposed to be a crucial disease mechanism. However, it is currently unclear how LLPS impacts the behaviour of FUS in cells, e.g. its interactome. Hence, we developed a method allowing for the purification of LLPS FUS-containing droplets from cell lysates. We observe substantial alterations in the interactome, depending on its biophysical state. While non-LLPS FUS interacts mainly with factors involved in pre-mRNA processing, LLPS FUS predominantly binds to proteins involved in chromatin remodelling and DNA damage repair. Interestingly, also mitochondrial factors are strongly enriched with LLPS FUS, providing a potential explanation for the observed changes in mitochondrial gene expression in mouse models of ALS-FUS. In summary, we present a methodology to investigate the interactomes of phase separating proteins and provide evidence that LLPS shapes the FUS interactome with implications for function and disease.
Project description:BackgroundDanon disease is an X-linked multisystemic disorder characterized by skeletal myopathy, cardiomyopathy, and intellectual disability.Case summaryHerein, we describe two patients affected by Danon disease from the same family, a father (Patient 1) and his daughter (Patient 2). In Patient 1, a short PR interval with pre-excitation was evident. In Patient 2, over a 24-h period 2369 atrial premature beats and rare isolated ventricular ectopics were detected. Both patients exhibited left ventricular hypertrophy with non-compaction myocardium, and the left ventricular ejection fraction was impaired in Patient 1 and normal in Patient 2. In Patient 2, the total left ventricular strain value was reduced, and layer-specific strain revealed that subepicardial strain impaired more than in other layers. Late gadolinium enhancement was detected both in left and right ventricles in Patient 2, and cardiac fibrosis was more apparent in the subepicardium of left ventricular free wall. Four-dimensional (4D) echocardiography revealed that left atrial reservoir strain and left ventricular total longitudinal strain were induced.DiscussionNovel 4D echocardiography and left ventricular systolic strain may play important role in diagnosis and myocardial functional evaluation in Danon disease.
Project description:During cell division, remodelling of the nuclear envelope enables chromosome segregation by the mitotic spindle1. The reformation of sealed nuclei requires ESCRTs (endosomal sorting complexes required for transport) and LEM2, a transmembrane ESCRT adaptor2-4. Here we show how the ability of LEM2 to condense on microtubules governs the activation of ESCRTs and coordinated spindle disassembly. The LEM motif of LEM2 binds BAF, conferring on LEM2 an affinity for chromatin5,6, while an adjacent low-complexity domain (LCD) promotes LEM2 phase separation. A proline-arginine-rich sequence within the LCD binds to microtubules and targets condensation of LEM2 to spindle microtubules that traverse the nascent nuclear envelope. Furthermore, the winged-helix domain of LEM2 activates the ESCRT-II/ESCRT-III hybrid protein CHMP7 to form co-oligomeric rings. Disruption of these events in human cells prevented the recruitment of downstream ESCRTs, compromised spindle disassembly, and led to defects in nuclear integrity and DNA damage. We propose that during nuclear reassembly LEM2 condenses into a liquid-like phase and coassembles with CHMP7 to form a macromolecular O-ring seal at the confluence between membranes, chromatin and the spindle. The properties of LEM2 described here, and the homologous architectures of related inner nuclear membrane proteins7,8, suggest that phase separation may contribute to other critical envelope functions, including interphase repair8-13 and chromatin organization14-17.
Project description:Low-complexity (LC) sequences, regions that are predominantly made up of limited amino acids, are often observed in eukaryotic nuclear proteins. The role of these LC sequences has remained unclear for decades. Recent studies have shown that LC sequences are important in the formation of membrane-less organelles via liquid-liquid phase separation (LLPS). The RNA binding protein, fused in sarcoma (FUS), is the most widely studied of the proteins that undergo LLPS. It forms droplets, fibers, or hydrogels using its LC sequences. The N-terminal LC sequence of FUS is made up of Ser, Tyr, Gly, and Gln, which form a labile cross-? polymer core while the C-terminal Arg-Gly-Gly repeats accelerate LLPS. Normally, FUS localizes to the nucleus via the nuclear import receptor karyopherin ?2 (Kap?2) with the help of its C-terminal proline-tyrosine nuclear localization signal (PY-NLS). Recent findings revealed that Kap?2 blocks FUS mediated LLPS, suggesting that Kap?2 is not only a transport protein but also a chaperone which regulates LLPS during the formation of membrane-less organelles. In this review, we discuss the effects of the nuclear import receptors on LLPS.
Project description:RNA Polymerase II (Pol II) and transcription factors form concentrated hubs in cells via multivalent protein-protein interactions, often mediated by proteins with intrinsically disordered regions. During Herpes Simplex Virus infection, viral replication compartments (RCs) efficiently enrich host Pol II into membraneless domains, reminiscent of liquid-liquid phase separation. Despite sharing several properties with phase-separated condensates, we show that RCs operate via a distinct mechanism wherein unrestricted nonspecific protein-DNA interactions efficiently outcompete host chromatin, profoundly influencing the way DNA-binding proteins explore RCs. We find that the viral genome remains largely nucleosome-free, and this increase in accessibility allows Pol II and other DNA-binding proteins to repeatedly visit nearby DNA binding sites. This anisotropic behavior creates local accumulations of protein factors despite their unrestricted diffusion across RC boundaries. Our results reveal underappreciated consequences of nonspecific DNA binding in shaping gene activity, and suggest additional roles for chromatin in modulating nuclear function and organization.