Unknown

Dataset Information

0

Chemical capping improves template switching and enhances sequencing of small RNAs.


ABSTRACT: Template-switching reverse transcription is widely used in RNA sequencing for low-input and low-quality samples, including RNA from single cells or formalin-fixed paraffin-embedded (FFPE) tissues. Previously, we identified the native eukaryotic mRNA 5' cap as a key structural element for enhancing template switching efficiency. Here, we introduce CapTS-seq, a new strategy for sequencing small RNAs that combines chemical capping and template switching. We probed a variety of non-native synthetic cap structures and found that an unmethylated guanosine triphosphate cap led to the lowest bias and highest efficiency for template switching. Through cross-examination of different nucleotides at the cap position, our data provided unequivocal evidence that the 5' cap acts as a template for the first nucleotide in reverse transcriptase-mediated post-templated addition to the emerging cDNA-a key feature to propel template switching. We deployed CapTS-seq for sequencing synthetic miRNAs, human total brain and liver FFPE RNA, and demonstrated that it consistently improves library quality for miRNAs in comparison with a gold standard template switching-based small RNA-seq kit.

SUBMITTER: Wulf MG 

PROVIDER: S-EPMC8754658 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2021-09-13 | GSE171049 | GEO
| PRJNA718247 | ENA
2024-12-26 | GSE274121 | GEO
| S-EPMC3501006 | biostudies-literature
| PRJNA1144991 | ENA
| S-EPMC6839120 | biostudies-literature
| S-EPMC4829319 | biostudies-literature
| S-EPMC3298130 | biostudies-literature
| S-EPMC3392881 | biostudies-other
| S-EPMC3853366 | biostudies-literature