Unknown

Dataset Information

0

Panax notoginseng saponins reverse P-gp-mediated steroid resistance in lupus: involvement in the suppression of the SIRT1/FoxO1/MDR1 signalling pathway in lymphocytes.


ABSTRACT:

Background

P-glycoprotein (P-gp)-mediated steroid resistance (SR) has been suggested to play a significant role in lupus nephritis (LN) treatment failure. Panax notoginseng saponins (PNS), the main effective components of the traditional Chinese medicine notoginseng, exhibited potent reversal capability of P-gp-mediated SR, but its mechanism remains unknown. This study aimed to investigate the effect of PNS on reversing SR in lupus and its underlying mechanism in vivo and in vitro.

Methods

In this study, an SR animal and splenic lymphocyte model were established using low-dose methylprednisolone (MP). Flow cytometry was used to detect the effect of PNS on reversing P-gp-mediated SR and the expression of P-gp in different T-cells phenotypes. Serum levels of ANA and dsDNA in lupus mice were measured by ELISA. Apoptosis was identified by Annexin V-FITC/PI staining. RT-PCR and Western blotting were used to detect the protein and mRNA expression levels of SIRT1, FoxO1, and MDR1 in SR splenic lymphocytes from lupus mice (SLCs/MPs).

Results

PNS could reverse the SR in lupus mice. Simultaneously, PNS increased the apoptotic effect of MP on SLCs/MP cells. The increased accumulation of rhodamine-123 (Rh-123) indicated that intracellular steroid accumulation could be increased by the action of PNS. Moreover, PNS decreased the expression of P-gp levels. Further experiments elucidated that the SIRT1/FoxO1/MDR1 signalling pathway existed in SLCs/MP cells, and PNS suppressed its expression level to reverse SR. The expression of P-gp in Th17 from SLCs/MP cells was increased, while PNS could reduce its level in a more obvious trend.

Conclusion

The present study suggested that PNS reversed P-gp-mediated SR via the SIRT1/FoxO1/MDR1 signalling pathway, which might become a valuable drug for the treatment of SR in lupus. Th17 might be the main effector cell of PNS reversing SR.

SUBMITTER: Pan F 

PROVIDER: S-EPMC8756704 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7471129 | biostudies-literature
| S-EPMC4131641 | biostudies-literature
| S-EPMC5859349 | biostudies-literature
| S-EPMC5989832 | biostudies-other
| S-EPMC6213075 | biostudies-literature
| S-EPMC5732705 | biostudies-literature
| S-EPMC8144126 | biostudies-literature
| S-EPMC11319572 | biostudies-literature
| S-EPMC6940827 | biostudies-literature
| S-EPMC6982892 | biostudies-literature