Project description:BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has caused a global pandemic beginning in 2020, can be detected by reverse-transcription polymerase chain reaction (RT-PCR). However, owing to the urgent need for a large number of detection kits, the time spent researching and developing these kits has been shortened during the pandemic, and the kits that are being used commercially have not undergone full and independent evaluation. To ensure the accuracy of SARS-CoV-2 test results, performance verification of commercial Real-Time quantitative PCR (RT-qPCR) kits is required.MethodsThe performance of five commercial RT-qPCR diagnostic kits for SARS-CoV-2 used in China was evaluated using a coronavirus disease 2019 (COVID-19) RNA liquid performance verification reference product-manufactured by Guangzhou Bondson (BDS) Biotechnology Co., Ltd.,Guangzhou, China-that uses droplet digital RT-PCR technology combined with fluorescence quantitative PCR. The five kits of Novel Coronavirus 2019-nCoV nucleic acid detection kit (RT-qPCR method) evaluated were Da An (Da An Gene Co., Ltd. of Sun Yat-sen University), Liferiver (Shanghai ZJ Bio-Tech Co., Ltd.), Kinghawk (Beijing Kinghawk Pharmaceutical Co., Ltd.), eDiagnosis (Wuhan Easy Diagnosis Biomedicine Co., Ltd.), and Maccura (Maccura Biotechnology Co., Ltd.). Performance verification criteria included the coincidence rate, limit of detection (LoD), cross-reactivity, precision, and anti-interference. Finally, through the BDS performance verification reference product kit, clinical samples are used to verify its clinical diagnostic efficacy.ResultsThe coincidence rate was 100% for all kits except for Kinghawk, which was 95%. The LoD for Da An, eDiagnosis and Maccura was 250copies/mL, and it was 1000 copies/ml for Liferiver. Kinghawk was not able to detect its advertised LoD of 500 copies/ml. The cross-reactivity test results were all negative. Moreover, all kits had a coefficient of variation less than 5%; however, Liferiver showed the best precision. Da An, Liferiver, and eDiagnosis showed higher sensitivity to the nucleocapsid (N) gene than they did to the open reading frame (ORF) 1ab genes. Anti-interference results for all five kits were positive. The results of clinical diagnostic efficacy were that the specificity of the four kits was 1.000 (0.877-1.000), the sensitivity of Da An was 1.000 (0.850-1.000), Liferiver was 0.964 (0.798-0.998), Maccura was 0.893 (0.706-0.972), and eDiagnosis was 0.857 (0.664-0.953).ConclusionsAll commercial RT-qPCR diagnostic kits for SARS-CoV-2 passed the BDS performance verification, except for Kinghawk (batch No:20200608113) which failed to detect the LoD of 500 copies/mL. Da An and Liferiver have excellent clinical diagnostic specificity and sensitivity. This study can provide guidance for the selection or optimization of RT-qPCR diagnostic test kits for SARS-CoV-2.
Project description:Rapid tests for SARS-COV-2 infection are important tools for pandemic control, but current rapid tests are based on proprietary designs and reagents. We report clinical validation results of an open-access lateral flow assay (OA-LFA) design using commercially available materials and reagents, along with RT-qPCR and commercially available comparators (BinaxNOW® and Sofia®). Adult patients with suspected COVID-19 based on clinical signs and symptoms, and with symptoms ≤7 days duration, underwent anterior nares (AN) sampling for the OA-LFA, Sofia®, BinaxNOW ™, and RT-qPCR, along with nasopharyngeal (NP) RT-qPCR. Results indicate a positive predictive agreement with NP sampling as 69% (60% -78%) OA-LFA, 74% (64% - 82%) Sofia®, and 82% (73% - 88%) BinaxNOW™. The implication for these results is that we provide an open-access LFA design that meets the minimum WHO target product profile for a rapid test, that virtually any diagnostic manufacturer could produce.
Project description:IntroductionQuantitative reverse transcription polymerase chain reaction (RT-qPCR) can detect the severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) in a highly specific manner. However, a decrease in the specificity of PCR assays for their targets may lead to false negative results.MethodsHere, 177 high-coverage complete SARS-CoV-2 genome sequences from 13 Brazilian states were aligned with 15 WHO recommended PCR assays.ResultsOnly 3 of the 15 completely aligned to all Brazilian sequences. Ten assays had mismatches in up to 3 sequences and two in many sequences.ConclusionThese results should be taken into consideration when using PCR-based diagnostics in Brazil.
Project description:SARS-CoV-2 variants of concern, demonstrating higher infection rate and lower vaccine effectiveness as compared with the original virus, are important factors propelling the ongoing COVID-19 global outbreak. Therefore, prompt identification of these variants in the environment is essential for pandemic assessment and containment efforts. One well established tool for such viral monitoring is the use of wastewater systems. Here, we describe continuous monitoring of traces of SARS-CoV-2 viruses in the municipal wastewater of a large city in Israel. By observing morbidity fluctuations (during three main COVID-19 surges) occurring in parallel with Pfizer-BioNTech COVID-19 vaccine vaccination rate, compromised immunity was revealed in the current morbidity peak. RT-qPCR assays for the Original (D614G), Alpha and Beta variants had been previously developed and are being employed for wastewater surveillance. In the present study we developed a sensitive RT-qPCR assay designed for the rapid, direct detection of Gamma and Delta variants of concern. Sensitive quantification and detection of the various variants showed the prevalence of the original variant during the first morbidity peak. The dominance of the Alpha variant over the original variant correlated with the second morbidity peak. These variants decreased concurrently with an increase in vaccinations (Feb-March 2021) and the observed decrease in morbidity. The appearance and subsequent rise of the Delta variant became evident and corresponded to the third morbidity peak (June-August 2021). These results suggest a high vaccine neutralization efficiency towards the Alpha variant compared to its neutralization efficiency towards the Delta variant. Moreover, the third vaccination dose (booster) seems to regain neutralization efficiency towards the Delta variant. The developed assays and wastewater-based epidemiology are important tools aiding in morbidity surveillance and disclosing vaccination efforts and immunity dynamics in the community.
Project description:SARS-CoV-2 is still threat for humanity and its detection is crucial. Although real time reverse transcriptase polymerase chain reaction is the most reliable method for detection of N protein genes, alternative methods for molecular detection are still needed. Thus, lateral flow assay models for 2019-nCoV_ N3 were developed for molecular detection. Briefly, gold nanoparticles were used as label and three sandwich models (1A, 1B, and 1.2) were designed. Prob concentrations on gold nanoparticles, types of sandwich model and membrane, limit of detection of target gene and buffer efficiency were studied. Model 1B has shown the best results with M170 membrane. Lower limit of detection was achieved by model 1.2 as 5 pM. All parameters have significant role for molecular detection of SARS-CoV-2 by lateral flow assays, and these results will be useful for nucleic acid based lateral flow assays for viral detection or multiple detection of mutated forms in various detection systems.
Project description:BackgroundThe SARS-CoV-2 outbreak has emerged at the end of 2019. Aside from the detection of viral genome with specific RT-PCR, there is a growing need for reliable determination of the serological status. We aimed at evaluating five SARS-CoV-2 serology assays.MethodsAn in-house immunofluorescence assay (IFA), two ELISA kits (EUROIMMUN® ELISA SARS-CoV-2 IgG and NovaLisa® SARS-CoV-2 IgG and IgM) and two lateral flow assays (T-Tek® SARS-CoV-2 IgG/IgM Antibody Test Kit and Sure Bio-tech® SARS-CoV-2 IgM/IgG Antibody Rapid Test) were compared on 40 serums from RT-PCR-confirmed SARS-CoV-2 infected patients and 10 SARS-CoV-2 RT-PCR negative subjects as controls.ResultsControl subjects tested negative for SARS-CoV-2 antibodies with all five systems. Estimated sensitivities varied from 35.5 to 71.0% for IgG detection and from 19.4 to 64.5% for IgM detection. For IgG, in-house IFA, EuroImmun, T-Tek and NovaLisa displayed 50-72.5% agreement with other systems except IFA vs EuroImmun and T-Tek vs NovaLisa. Intermethod agreement for IgM determination was between 30 and 72.5%.DiscussionThe overall intermethod agreement was moderate. This inconsistency could be explained by the diversity of assay methods, antigens used and immunoglobulin isotype tested. Estimated sensitivities were low, highlighting the limited value of antibody detection in CoVID-19.ConclusionComparison of five systems for SARS-CoV-2 IgG and IgM antibodies showed limited sensitivity and overall concordance. The place and indications of serological status assessment with currently available tools in the CoVID-19 pandemic need further evaluations.
Project description:Testing for the presence of coronavirus is an essential diagnostic tool for monitoring and managing the current COVID-19 pandemic. The only reliable test in current use for testing acute infection targets the genome of SARS-CoV-2, and the most widely used method is quantitative fluorescence-based reverse transcription polymerase chain reaction (RT-qPCR). Despite its ubiquity, there is a significant amount of uncertainty about how this test works, potential throughput and reliability. This has resulted in widespread misrepresentation of the problems faced using this test during the current COVID-19 epidemic. This primer provides simple, straightforward and impartial information about RT-qPCR.
Project description:Current studies have confirmed the feasibility of SARS-CoV-2 RNA detection by RT-qPCR assays in wastewater samples as an effective surveillance tool of COVID-19 prevalence in a community. Analytical performance of various RT-qPCR assays has been compared against wastewater samples based on the positive ratio. However, there is no systematic comparison work has been conducted for both analytical sensitivity and quantitative reliability against wastewater, which are essential factors for WBE. In this study, the detection performance of four RT-qPCR primer-probe sets, including CCDC-N, CDC-N1, N-Sarbeco, and E-Sarbeco, was systematically evaluated with pure synthetized plasmids, spiked wastewater mocks and raw wastewater samples. In addition to confirm RT-qPCR results, Nanopore sequencing was employed to delineate at molecular level for the analytical sensitivity and reproducibility of those primer-probe sets. CCDC-N showed high sensitivity and the broadest linearity range for wastewater samples. It was thus recommended to be the most efficient tool in the quantitative analysis of SARS-CoV-2 in wastewater. CDC-N1 had the highest sensitivity for real wastewater and thus would be suitable for the screening of wastewater for the presence of SARS-CoV-2. When applying the primer-probe sets to wastewater samples collected from different Australian catchments, increased active clinical cases were observed with the augment of SARS-CoV-2 RNA quantified by RT-qPCR in wastewater in low prevalence communities.
Project description:The reverse transcription quantitative polymerase chain reaction (RT-qPCR) is an established tool for the diagnosis of RNA pathogens. Its potential for automation has caused it to be used as a presence/absence diagnostic tool even when RNA quantification is not required. This technology has been pushed to the forefront of public awareness by the COVID-19 pandemic, as its global application has enabled rapid and analytically sensitive mass testing, with the first assays targeting three viral genes published within days of the publication of the SARS-CoV-2 genomic sequence. One of those, targeting the RNA-dependent RNA polymerase gene, has been heavily criticised for supposed scientific flaws at the molecular and methodological level, and this criticism has been extrapolated to doubts about the validity of RT-qPCR for COVID-19 testing in general. We have analysed this assay in detail, and our findings reveal some limitations but also highlight the robustness of the RT-qPCR methodology for SARS-CoV-2 detection. Nevertheless, whilst our data show that some errors can be tolerated, it is always prudent to confirm that the primer and probe sequences complement their intended target, since, when errors do occur, they may result in a reduction in the analytical sensitivity. However, in this case, it is unlikely that a mismatch will result in poor specificity or a significant number of false-positive SARS-CoV-2 diagnoses, especially as this is routinely checked by diagnostic laboratories as part of their quality assurance.
Project description:The current quantitative reverse transcription PCR (RT-qPCR) assay recommended for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing in the United States requires analysis of 3 genomic targets per sample: 2 viral and 1 host. To simplify testing and reduce the volume of required reagents, we devised a multiplex RT-qPCR assay to detect SARS-CoV-2 in a single reaction. We used existing N1, N2, and RP primer and probe sets by the Centers for Disease Control and Prevention, but substituted fluorophores to allow multiplexing of the assay. The cycle threshold (Ct) values of our multiplex RT-qPCR were comparable to those obtained by the single assay adapted for research purposes. Low copy numbers (≥500 copies/reaction) of SARS-CoV-2 RNA were consistently detected by the multiplex RT-qPCR. Our novel multiplex RT-qPCR improves upon current single diagnostics by saving reagents, costs, time, and labor.