Project description:BackgroundThe emergence of the novel coronavirus in Wuhan, Hubei Province, China, in December 2019 marked the synchronization of the world to a peculiar clock that is counting infected cases and deaths instead of hours and minutes. The pandemic, highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has indeed caused considerable morbidity and mortality and drastically changed our everyday lives. As we continue to become acquainted with the seventh coronavirus known to infect our species, a number of its characteristics keep surprising us. Among those is the wide spectrum of clinical manifestations of the resulting coronavirus disease 2019 (COVID-19), which ranges from asymptomatic or mildly symptomatic infections to severe pneumonia, respiratory failure, and death.Main bodyData, now from patient populations, are beginning to accumulate on human genetic factors that may contribute to the observed diversified disease severity. Therefore, we deemed it prudent to review the associations between specific human genetic variants and clinical disease severity or susceptibility to infection that have been reported in the literature to date (at the time of writing this article in early August 2020 with updates in mid-September). With this work, we hope (i) to assist the fast-paced biomedical research efforts to combat the virus by critically summarizing current knowledge on the potential role of host genetics, and (ii) to help guide current genetics and genomics research towards candidate gene variants that warrant further investigation in larger studies. We found that determinants of differing severity of COVID-19 predominantly include components of the immune response to the virus, while determinants of differing susceptibility to SARS-CoV-2 mostly entail genes related to the initial stages of infection (i.e., binding of the cell surface receptor and entry).ConclusionElucidating the genetic determinants of COVID-19 severity and susceptibility to SARS-CoV-2 infection would allow for the stratification of individuals according to risk so that those at high risk would be prioritized for immunization, for example, if or when safe and effective vaccines are developed. Our enhanced understanding of the underlying biological mechanisms could also guide personalized therapeutics. Such knowledge is already beginning to provide clues that help explain, at least in part, current epidemiologic observations regarding the typically more severe or benign disease course in older males and children, respectively.
Project description:Since the start of the coronavirus disease 2019 (COVID-19) pandemic, important insights have been gained into virus biology and the host factors that modulate the human immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 displays a highly variable clinical picture that ranges from asymptomatic disease to lethal pneumonia. Apart from well-established general risk factors such as advanced age, male sex and chronic comorbidities, differences in host genetics have been shown to influence the individual predisposition to develop severe manifestations of COVID-19. These differences range from common susceptibility loci to rare genetic variants with strongly predisposing effects, or proven pathogenic variants that lead to known or novel inborn errors of immunity (IEI), which constitute a growing group of heterogeneous Mendelian disorders with increased susceptibility to infectious disease, auto-inflammation, auto-immunity, allergy or malignancies. The current genetic findings point towards a convergence of common and rare genetic variants that impact the interferon signalling pathways in patients with severe or critical COVID-19. Monogenic risk factors that impact IFN-I signalling have an expected prevalence between 1 and 5% in young, previously healthy individuals (<60 years of age) with critical COVID-19. The identification of these IEI such as X-linked TLR7 deficiency indicates a possibility for targeted genetic screening and personalized clinical management. This review aims to provide an overview of our current understanding of the host genetic factors that predispose to severe manifestations of COVID-19 and focuses on rare variants in IFN-I signalling genes and their potential clinical implications.
Project description:Although advanced age and presence of comorbidities significantly impact the variation observed in the clinical symptoms of COVID-19, it has been suggested that genetic variants may also be involved in the disease. Thus, the aim of this study was to perform a systematic review with meta-analysis of the literature to identify genetic polymorphisms that are likely to contribute to COVID-19 pathogenesis. Pubmed, Embase and GWAS Catalog repositories were systematically searched to retrieve articles that investigated associations between polymorphisms and COVID-19. For polymorphisms analyzed in 3 or more studies, pooled OR with 95% CI were calculated using random or fixed effect models in the Stata Software. Sixty-four eligible articles were included in this review. In total, 8 polymorphisms in 7 candidate genes and 74 alleles of the HLA loci were analyzed in 3 or more studies. The HLA-A*30 and CCR5 rs333Del alleles were associated with protection against COVID-19 infection, while the APOE rs429358C allele was associated with risk for this disease. Regarding COVID-19 severity, the HLA-A*33, ACE1 Ins, and TMPRSS2 rs12329760T alleles were associated with protection against severe forms, while the HLA-B*38, HLA-C*6, and ApoE rs429358C alleles were associated with risk for severe forms of COVID-19. In conclusion, polymorphisms in the ApoE, ACE1, TMPRSS2, CCR5, and HLA loci appear to be involved in the susceptibility to and/or severity of COVID-19.
Project description:The uptick in SARS-CoV-2 infection has resulted in a worldwide COVID-19 pandemic, which has created troublesome health and economic problems. We performed case-control meta-analyses in both African and European ethnicity COVID-19 disease cases based on laboratory test and phenotypic criteria. The cases had laboratory-confirmed SARS-CoV-2 infection. We uniquely investigated COVID infection genetics in a pediatric population. Our cohort has a large African ancestry component, also unique to our study. We tested for genetic variant association in 498 cases vs. 1,533 controls of African ancestry and 271 cases vs. 855 controls of European ancestry. We acknowledge that the sample size is relatively small, owing to the low prevalence of COVID infection among pediatric individuals. COVID-19 cases averaged 13 years of age. Pediatric genetic studies enhance the ability to detect genetic associations with a limited possible environment impact. Our findings support the notion that some genetic variants, most notably at the SEMA6D, FMN1, ACTN1, PDS5B, NFIA, ADGRL3, MMP27, TENM3, SPRY4, MNS1, and RSU1 loci, play a role in COVID-19 infection susceptibility. The pediatric cohort also shows nominal replication of previously reported adult study results: CCR9, CXCR6, FYCO1, LZTFL1, TDGF1, CCR1, CCR2, CCR3, CCR5, MAPT-AS1, and IFNAR2 gene variants. Reviewing the biological roles of genes implicated here, NFIA looks to be the most interesting as it binds to a palindromic sequence observed in both viral and cellular promoters and in the adenovirus type 2 origin of replication.
Project description:By analyzing late-onset Alzheimer's disease (LOAD) in a genome-wide association study (313,504 SNPs, three series, 844 cases and 1,255 controls) and evaluating the 25 SNPs with the most significant allelic association in four additional series (1,547 cases and 1,209 controls), we identified a SNP (rs5984894) on Xq21.3 in PCDH11X that is strongly associated with LOAD in individuals of European descent from the United States. Analysis of rs5984894 by multivariable logistic regression adjusted for sex gave global P values of 5.7 x 10(-5) in stage 1, 4.8 x 10(-6) in stage 2 and 3.9 x 10(-12) in the combined data. Odds ratios were 1.75 (95% CI = 1.42-2.16) for female homozygotes (P = 2.0 x 10(-7)) and 1.26 (95% CI = 1.05-1.51) for female heterozygotes (P = 0.01) compared to female noncarriers. For male hemizygotes (P = 0.07) compared to male noncarriers, the odds ratio was 1.18 (95% CI = 0.99-1.41).
Project description:Pneumonia, an acute respiratory tract infection, is one of the major causes of mortality worldwide. Depending on the site of acquisition, pneumonia can be community acquired pneumonia (CAP) or nosocomial pneumonia (NP). The risk of pneumonia, is partially driven by host genetics. CYP1A1 is a widely studied pulmonary CYP family gene primarily expressed in peripheral airway epithelium. The CYP1A1 genetic variants, included in this study, alter the gene activity and are known to contribute in lung inflammation, which may cause pneumonia pathogenesis. In this study, we performed a meta-analysis to establish the possible contribution of CYP1A1 gene, and its three variants (rs2606345, rs1048943 and rs4646903) towards the genetic etiology of pneumonia risk. Using PRISMA guidelines, we systematically reviewed and meta-analysed case-control studies, evaluating risk of pneumonia in patients carrying the risk alleles of CYP1A1 variants. Heterogeneity across the studies was evaluated using I2 statistics. Based on heterogeneity, a random-effect (using maximum likelihood) or fixed-effect (using inverse variance) model was applied to estimate the effect size. Pooled odds ratio (OR) was calculated to estimate the overall effect of the risk allele association with pneumonia susceptibility. Egger's regression test and funnel plot were used to assess publication bias. Subgroup analysis was performed based on pneumonia type (CAP and NP), population, as well as age group. A total of ten articles were identified as eligible studies, which included 3049 cases and 2249 healthy controls. The meta-analysis findings revealed CYP1A1 variants, rs2606345 [T vs G; OR = 1.12 (0.75-1.50); p = 0.02; I2 = 84.89%], and rs1048943 [G vs T; OR = 1.19 (0.76-1.61); p = 0.02; I2 = 0.00%] as risk markers whereas rs4646903 showed no statistical significance for susceptibility to pneumonia. On subgroup analysis, both the genetic variants showed significant association with CAP but not with NP. We additionally performed a spatial analysis to identify the key factors possibly explaining the variability across countries in the prevalence of the coronavirus disease 2019 (COVID-19), a viral pneumonia. We observed a significant association between the risk allele of rs2606345 and rs1048943, with a higher COVID-19 prevalence worldwide, providing us important links in understanding the variability in COVID-19 prevalence.