Ontology highlight
ABSTRACT: Purpose
The COVID-19 disease with acute respiratory symptoms emerged in 2019. The causal agent of the disease, the SARS-CoV-2 virus, is classified into the Betacoronaviruses family. Coronaviruses (CoVs) are a huge family of viruses. Therefore, homologous recombination studies can help recognize the phylogenetic relationships among these viruses.Methods
In order to detect possible recombination events in SASRS-CoV-2, the genome sequences of Betacoronaviruses were obtained from the GenBank. The nucleotide sequences with the identity ≥ 60% to SARS-CoV-2 genome sequence were selected and then analyzed using different algorithms.Results
The results showed two recombination events at the beginning and the end of the genome sequence of SARS-CoV-2. Bat-SL-CoVZC21 (GenBank accession number MG772934) was specified as the minor parent for both events with p-values of 8.66 × 10-87 and 3.29 × 10-48, respectively. Furthermore, two recombination regions were detected at the beginning and the middle of the SARS-CoV-2 spike gene. Pangolin-CoV (PCoV_GX-P4L) and Rattus CoV (ChRCoV-HKU24) were determined as the potential parents with the GenBank accession number MT040333 and KM349742, respectively. Analysis of the spike gene revealed more similarity and less nucleotide diversity between SARS-CoV-2 and pangolin-CoVs.Conclusion
Detection of the ancestors of SARS-CoV-2 in the coronaviruses family can help identify and define the phylogenetic relationships of the family Coronaviridae. Furthermore, constructing a phylogenetic tree based on the recombination regions made changes in the phylogenetic relationships of Betacoronaviruses.
SUBMITTER: Lohrasbi-Nejad A
PROVIDER: S-EPMC8761517 | biostudies-literature |
REPOSITORIES: biostudies-literature