Project description:BackgroundWith the continuous emergence of new SARS-CoV-2 variants that feature increased transmission and immune escape, there is an urgent demand for a better vaccine design that will provide broader neutralizing efficacy.MethodsWe report an mRNA-based vaccine using an engineered "hybrid" receptor binding domain (RBD) that contains all 16 point-mutations shown in the currently prevailing Omicron and Delta variants.ResultsA booster dose of hybrid vaccine in mice previously immunized with wild-type RBD vaccine induced high titers of broadly neutralizing antibodies against all tested SARS-CoV-2 variants of concern (VOCs). In naïve mice, hybrid vaccine generated strong Omicron-specific neutralizing antibodies as well as low but significant titers against other VOCs. Hybrid vaccine also elicited CD8+/IFN-γ+ T cell responses against a conserved T cell epitope present in wild type and all VOCs.ConclusionsThese results demonstrate that inclusion of different antigenic mutations from various SARS-CoV-2 variants is a feasible approach to develop cross-protective vaccines.
Project description:Data on the dynamics and persistence of humoral immunity against SARS-CoV-2 after primary vaccination with two-dose inactivated vaccine (CoronaVac) are limited. This study evaluated the sequential effects of prior infection, heterologous boosting with mRNA-1273 (Moderna), and the occurrence of Omicron vaccine-breakthrough infection (VBI) thereafter. We evaluated anti-spike IgG (Abbott) and neutralising (cPASS/GenScript) antibody (nAb) titers up to one year after mRNA-1273 boost in two-dose-CoronaVac-primed Indonesian healthcare workers (August 2021-August 2022). We used linear mixed modeling to estimate the rate of change in antibody levels, and logistic regression to examine associations between antibody levels and VBI. Of 138 participants, 52 (37.7%) had a prior infection and 78 (56.5%) received an mRNA-1273 booster. After two-dose CoronaVac, antibody titers had significantly declined within 180 days, irrespective of prior infection. After mRNA-1273 booster, anti-spike IgG (1.47% decline/day) and Omicron B.1.1.529/BA.2 nAbs declined between day 28-90, and IgG titers plateaued between day 90-360. During the BA.1/BA.2 wave (February-March 2022), 34.6% (27/78) of individuals experienced a VBI (median 181 days after mRNA-1273), although none developed severe illness. VBI was associated with low pre-VBI anti-spike IgG and B.1.1.529/BA.2 nAbs, which were restored post-VBI. mRNA-1273 booster after two-dose CoronaVac did not prevent BA.1/BA.2 VBI. Periodic vaccine boosters may be warranted against emerging SARS-CoV-2 variants.
Project description:Virus-like particle (VLP) and live virus assays were used to investigate neutralizing immunity against Delta and Omicron SARS-CoV-2 variants in 259 samples from 128 vaccinated individuals. Following Delta breakthrough infection, titers against WT rose 57-fold and 3.1-fold compared with uninfected boosted and unboosted individuals, respectively, versus only a 5.8-fold increase and 3.1-fold decrease for Omicron breakthrough infection. Among immunocompetent, unboosted patients, Delta breakthrough infections induced 10.8-fold higher titers against WT compared with Omicron (p = 0.037). Decreased antibody responses in Omicron breakthrough infections relative to Delta were potentially related to a higher proportion of asymptomatic or mild breakthrough infections (55.0% versus 28.6%, respectively), which exhibited 12.3-fold lower titers against WT compared with moderate to severe infections (p = 0.020). Following either Delta or Omicron breakthrough infection, limited variant-specific cross-neutralizing immunity was observed. These results suggest that Omicron breakthrough infections are less immunogenic than Delta, thus providing reduced protection against reinfection or infection from future variants.
Project description:To determine viral dynamics in Omicron breakthrough infections, we measured severe acute respiratory syndrome coronavirus 2 RNA in 206 double-vaccinated or boostered individuals. During the first 3 days following the onset of symptoms, viral loads were significantly higher (cycle threshold [Ct], 21.76) in vaccinated compared to boostered (Ct, 23.14) individuals (P = .029). However, by performing a longitudinal analysis on 32 individuals over 14 days, no difference in the viral load trajectory was observed between double-vaccinated and boostered patients. Our results indicate that booster immunization results in a reduction in detectable viral loads without significantly changing viral load dynamics over time.
Project description:The rapid spread of the highly contagious Omicron variant of SARS-CoV-2 along with its high number of mutations in the spike gene has raised alarm about the effectiveness of current medical countermeasures. To address this concern, we measured neutralizing antibodies against Omicron in three important settings: (1) post-vaccination sera after two and three immunizations with the Pfizer/BNT162b2 vaccine, (2) convalescent sera from unvaccinated individuals infected by different variants, and (3) clinical-stage therapeutic antibodies. Using a pseudovirus neutralization assay, we found that titers against Omicron were low or undetectable after two immunizations and in most convalescent sera. A booster vaccination significantly increased titers against Omicron to levels comparable to those seen against the ancestral (D614G) variant after two immunizations. Neither age nor sex were associated with differences in post-vaccination antibody responses. Only three of 24 therapeutic antibodies tested retained their full potency against Omicron and high-level resistance was seen against fifteen. These findings underscore the potential benefit of booster mRNA vaccines for protection against Omicron and the need for additional therapeutic antibodies that are more robust to highly mutated variants.One sentence summaryThird dose of Pfizer/BioNTech COVID-19 vaccine significantly boosts neutralizing antibodies to the Omicron variant compared to a second dose, while neutralization of Omicron by convalescent sera, two-dose vaccine-elicited sera, or therapeutic antibodies is variable and often low.
Project description:The Omicron variant of SARS-CoV-2 is raising concerns because of its increased transmissibility and potential for reduced susceptibility to antibody neutralization. To assess the potential risk of this variant to existing vaccines, serum samples from mRNA-1273 vaccine recipients were tested for neutralizing activity against Omicron and compared to neutralization titers against D614G and Beta in live virus and pseudovirus assays. Omicron was 41-84-fold less sensitive to neutralization than D614G and 5.3-7.4-fold less sensitive than Beta when assayed with serum samples obtained 4 weeks after 2 standard inoculations with 100 μg mRNA-1273. A 50 μg boost increased Omicron neutralization titers and may substantially reduce the risk of symptomatic vaccine breakthrough infections.
Project description:Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of clinical concern. In a cohort of 417 persons who had received the second dose of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine at least 2 weeks previously, we identified 2 women with vaccine breakthrough infection. Despite evidence of vaccine efficacy in both women, symptoms of coronavirus disease 2019 developed, and they tested positive for SARS-CoV-2 by polymerase-chain-reaction testing. Viral sequencing revealed variants of likely clinical importance, including E484K in 1 woman and three mutations (T95I, del142-144, and D614G) in both. These observations indicate a potential risk of illness after successful vaccination and subsequent infection with variant virus, and they provide support for continued efforts to prevent and diagnose infection and to characterize variants in vaccinated persons. (Funded by the National Institutes of Health and others.).
Project description:Replication of SARS-CoV-2 in the human population is defined by distributions of mutants that are present at different frequencies within the infected host and can be detected by ultra-deep sequencing techniques. In this study, we examined the SARS-CoV-2 mutant spectra of amplicons from the spike-coding (S-coding) region of 5 nasopharyngeal isolates derived from patients with vaccine breakthrough. Interestingly, all patients became infected with the Alpha variant, but amino acid substitutions that correspond to the Delta Plus, Iota, and Omicron variants were present in the mutant spectra of the resident virus. Deep sequencing analysis of SARS-CoV-2 from patients with vaccine breakthrough revealed a rich reservoir of mutant types and may also identify tolerated substitutions that can be represented in epidemiologically dominant variants.