Unknown

Dataset Information

0

Regular Intake of Green Tea Polyphenols Suppresses the Development of Nonmelanoma Skin Cancer through miR-29-Mediated Epigenetic Modifications.


ABSTRACT: Previously, we and others have shown that the regular intake of green tea polyphenols (GTPs) reduces ultraviolet B (UVB) radiation-induced skin cancer by targeting multiple signaling pathways, including DNA damage, DNA repair, immunosuppression, and inflammation. Here, we determine the effect of GTPs on UVB-induced epigenetic changes, emphasizing DNA hypermethylation in UV-exposed skin and tumors and their association with miR-29, a key regulator of DNA methyltransferases (DNMTs). Skin cancer was induced in SKH-1 hairless mice following repeated exposures of UVB radiation (180 mJ/cm2, three times/week, 24 weeks) with or without GTPs supplementation (0.2%) in drinking water. Regular intake of GTPs inhibited tumor growth by hindering the cascade of DNA hypermethylation events. GTPs supplementation significantly blocked UVB-induced DNA hypermethylation in the skin (up to 35%; p < 0.0001) and in tumors (up to 50%; p < 0.0001). Experimental results showed that the levels of DNA hypermethylation were higher in GTPs-treated mice than in the control group. The expressions of miR-29a, miR-29b, and miR-29c were markedly decreased in UV-induced skin tumors, and GTPs administration blocked UVB-induced miR-29s depletion. Furthermore, these observations were verified using the in vitro approach in human skin cancer cells (A431) followed by treatment with GTPs or mimics of miR-29c. Increased levels of miR-29 were observed in GTPs-treated A431 cells, resulting in increased TET activity and decreased DNA hypermethylation. In conclusion, UVB-mediated miR-29 depletion promotes DNA hypermethylation and leads to enhanced tumor growth by silencing tumor suppressors. Regular intake of GTPs rescued UVB-induced miR-29 depletion and prevented tumor growth by maintaining reduced DNA hypermethylation and activating tumor suppressors. Our observations suggest that miR-based strategies and regular consumption of GTPs could minimize the risk of UVB-induced skin cancers and contribute to better management of NMSCs.

SUBMITTER: Kansal V 

PROVIDER: S-EPMC8777720 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3735300 | biostudies-other
| S-EPMC4009679 | biostudies-literature
| S-EPMC6073549 | biostudies-other
| S-EPMC2917478 | biostudies-literature
| S-EPMC3124776 | biostudies-literature
2023-10-03 | GSE232128 | GEO
| S-EPMC2645681 | biostudies-literature
| S-EPMC6220216 | biostudies-literature
| S-EPMC2383994 | biostudies-literature
| S-EPMC5652074 | biostudies-literature