Unknown

Dataset Information

0

Are CDS spreads predictable during the Covid-19 pandemic? Forecasting based on SVM, GMDH, LSTM and Markov switching autoregression.


ABSTRACT: This paper investigates the forecasting performance for credit default swap (CDS) spreads by Support Vector Machines (SVM), Group Method of Data Handling (GMDH), Long Short-Term Memory (LSTM) and Markov switching autoregression (MSA) for daily CDS spreads of the 513 leading US companies, in the period 2009-2020. The goal of this study is to test the forecasting performance of these methods before and during the Covid-19 pandemic and to check whether there are changes in the market efficiency. MSA outperforms all other methods most frequently. GMDH breaks the efficient market hypothesis more frequently (75%) than other methods. The change of the relative predictability during Covid-19 is small with some increase of the advantage of the investigated methods over a benchmark. We find that the market has been less efficient during Covid-19, however, there are no huge differences in prediction performances before and during the Covid-19 period.

SUBMITTER: Vukovic DB 

PROVIDER: S-EPMC8782769 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9287578 | biostudies-literature
| S-EPMC8190741 | biostudies-literature
| S-EPMC10589260 | biostudies-literature
| S-EPMC6090016 | biostudies-literature
| S-EPMC8797257 | biostudies-literature
| S-EPMC6863491 | biostudies-literature
| S-EPMC10557505 | biostudies-literature
| S-EPMC8242659 | biostudies-literature
| S-EPMC8712463 | biostudies-literature
| S-EPMC10502652 | biostudies-literature