Project description:Lung is the major organ affected by SARS-CoV-2. To explore the molecular mechanism in the lung after SARS-CoV-2 infection, we performed LC-MS based proteome and phosphoproteome analysis using lung tissue samples separated from rhesus macaques.
Project description:Almost 50% of COVID-19 patients have symptoms of liver injury. To explore the molecular mechanism in the livers after SARS-CoV-2 infection, we performed LC-MS based proteome and phosphoproteme analysis using liver tissue samples separated from rhesus macaques.
Project description:Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by elevated pulmonary vascular resistance and increased pressure in the distal pulmonary arteries. Systematic analysis of the proteins and pathways involved in the progression of PAH is crucial for understanding the underlying molecular mechanism. In this study, we performed tandem mass tags (TMT)-based relative quantitative proteomic profiling of lung tissues from rats treated with monocrotaline (MCT) for 1, 2, 3 and 4 weeks. A total of 6759 proteins were quantified, among which 2660 proteins exhibited significant changes (p-value < 0.05, fold change < 0.83 or >1.2). Notably, these changes included several known PAH-related proteins, such as Retnla (resistin-like alpha) and arginase-1. Furthermore, the expression of potential PAH-related proteins, including Aurora kinase B and Cyclin-A2, was verified via Western blot analysis. In addition, we performed quantitative phosphoproteomic analysis on the lungs from MCT-induced PAH rats and identified 1412 upregulated phosphopeptides and 390 downregulated phosphopeptides. Pathway enrichment analysis revealed significant involvement of pathways such as complement and coagulation cascades and the signaling pathway of vascular smooth muscle contraction. Overall, this comprehensive analysis of proteins and phosphoproteins involved in the development and progression of PAH in lung tissues provides valuable insights for the development of potential diagnostic and treatment targets for PAH.
Project description:BACKGROUND:Prostate cancer is a major public health issue, mainly because patients relapse after androgen deprivation therapy. Proteomic strategies, aiming to reflect the functional activity of cells, are nowadays among the leading approaches to tackle the challenges not only of better diagnosis, but also of unraveling mechanistic details related to disease etiology and progression. METHODS:We conducted here a large SILAC-based Mass Spectrometry experiment to map the proteomes and phosphoproteomes of four widely used prostate cell lines, namely PNT1A, LNCaP, DU145 and PC3, representative of different cancerous and hormonal status. RESULTS:We identified more than 3000 proteins and phosphosites, from which we quantified more than 1000 proteins and 500 phosphosites after stringent filtering. Extensive exploration of this proteomics and phosphoproteomics dataset allowed characterizing housekeeping as well as cell-line specific proteins, phosphosites and functional features of each cell line. In addition, by comparing the sensitive and resistant cell lines, we identified protein and phosphosites differentially expressed in the resistance context. Further data integration in a molecular network highlighted the differentially expressed pathways, in particular migration and invasion, RNA splicing, DNA damage repair response and transcription regulation. CONCLUSIONS:Overall, this study proposes a valuable resource toward the characterization of proteome and phosphoproteome of four widely used prostate cell lines and reveals candidates to be involved in prostate cancer progression for further experimental validation.
Project description:BACKGROUND:Idiosyncratic drug-induced liver injury (DILI) is a complex disorder that is difficult to predict, diagnose and treat. AIM:To describe the global serum proteome of patients with DILI and controls. METHODS:A label-free, mass spectrometry-based quantitative proteomic approach was used to explore protein expression in serum samples from 74 DILI patients (collected within 14 days of DILI onset) and 40 controls. A longitudinal analysis was conducted in a subset of 21 DILI patients with available 6-month follow-up serum samples. RESULTS:Comparison of DILI patients based on pattern, severity and causality assessment of liver injury revealed many differentially expressed priority 1 proteins among groups. Expression of fumarylacetoacetase was correlated with alanine aminotransferase (ALT; r = 0.237; P = 0.047), aspartate aminotransferase (AST; r = 0.389; P = 0.001) and alkaline phosphatase (r = -0.240; P = 0.043), and this was the only protein with significant differential expression when comparing patients with hepatocellular vs. cholestatic or mixed injury. In the longitudinal analysis, expression of 53 priority 1 proteins changed significantly from onset of DILI to 6-month follow-up, and nearly all proteins returned to expression levels comparable to control subjects. Ninety-two serum priority 1 proteins with significant differential expression were identified when comparing the DILI and control groups. Pattern analysis revealed proteins that are components of inflammation, immune system activation and several hepatotoxicity-specific pathways. Apolipoprotein E expression had the greatest power to differentiate DILI patients from controls (89% correct classification; AUROC = 0.97). CONCLUSION:This proteomic analysis identified differentially expressed proteins that are components of pathways previously implicated in the pathogenesis of idiosyncratic drug-induced liver injury.
Project description:Background: Post-infarction chronic heart failure is the most common type of heart failure. Patients with chronic heart failure show elevated morbidity and mortality with limited evidence-based therapies. Phosphoproteomic and proteomic analysis can provide insights regarding molecular mechanisms underlying post-infarction chronic heart failure and explore new therapeutic approaches. Methods and results: Global quantitative phosphoproteomic and proteomic analysis of left ventricular tissues from post-infarction chronic heart failure rats were performed. A total of 33 differentially expressed phosphorylated proteins (DPPs) and 129 differentially expressed proteins were identified. Bioinformatic analysis indicated that DPPs were enriched mostly in nucleocytoplasmic transport and mRNA surveillance pathway. Bclaf1 Ser658 was identified after construction of Protein-Protein Interaction Network and intersection with Thanatos Apoptosis Database. Predicted Upstream Kinases of DPPs based on kinase-substrate enrichment analysis (KSEA) app showed 13 kinases enhanced in heart failure. Proteomic analysis showed marked changes in protein expression related to cardiac contractility and metabolism. Conclusion: The present study marked phosphoproteomics and proteomics changes in post-infarction chronic heart failure. Bclaf1 Ser658 might play a critical role in apoptosis in heart failure. PRKAA1, PRKACA, and PAK1 might serve as potential therapeutic targets for post-infarction chronic heart failure.
Project description:Lentiviral replication in its target cells affects a delicate balance between cellular cofactors required for virus propagation and immunoregulation for host defense. To better elucidate cellular proteins linked to viral infection, we tested plasma from rhesus macaques infected with the simian immunodeficiency viral strain SIVsmm9, prior to, 10 days (acute), and 49 weeks (chronic) after viral infection. Changes in plasma protein content were measured by quantitative mass spectrometry by isobaric tags for absolute and relative quantitation (iTRAQ) methods. An 81 and 232% increase in SERPINA1 was seen during acute and chronic infection, respectively. Interestingly, gelsolin, vitamin D binding protein and histidine rich glycoprotein were decreased by 45% in acute conditions but returned to baseline during chronic infection. When compared to uninfected controls, a 48-103% increase in leucine rich alpha 2-glycoprotein, vitronectin, and ceruloplasmin was observed during chronic viral infection. Observed changes in plasma proteins expression likely represent a compensatory host response to persistent viral infection.
Project description:The outbreak of a novel coronavirus (SARS-CoV-2) in 2019 led to a worldwide pandemic, which remains an integral part of our lives to this day. Coronavirus disease (COVID-19) is a flu like condition, often accompanied by high fever and respiratory distress. In some cases, conjointly with other co-morbidities, COVID-19 can become severe, leading to lung arrest and even death. Although well-known from a clinical standpoint, the mechanistic understanding of lethal COVID-19 is still rudimentary. Studying the pathology and changes on a molecular level associated with the resulting COVID-19 disease is impeded by the highly infectious nature of the virus and the concomitant sampling challenges. We were able to procure COVID-19 post-mortem lung tissue specimens by our collaboration with the BSL-3 laboratory of the Biobanking and BioMolecular resources Research Infrastructure Austria which we subjected to state-of-the-art quantitative proteomic analysis to better understand the pulmonary manifestations of lethal COVID-19. Lung tissue samples from age-matched non-COVID-19 patients who died within the same period were used as controls. Samples were subjected to parallel accumulation-serial fragmentation combined with data-independent acquisition (diaPASEF) on a timsTOF Pro and obtained raw data was processed using DIA-NN software. Here we report that terminal COVID-19 patients display an increase in inflammation, acute immune response and blood clot formation (with concomitant triggering of fibrinolysis). Furthermore, we describe that COVID-19 diseased lungs undergo severe extracellular matrix restructuring, which was corroborated on the histopathological level. However, although undergoing an injury, diseased lungs seem to have impaired proliferative and tissue repair signalling, with several key kinase-mediated signalling pathways being less active. This might provide a mechanistic link to post-acute sequelae of COVID-19 (PASC; "Long COVID"). Overall, we emphasize the importance of histopathological patient stratification when interpreting molecular COVID-19 data.
Project description:Shammah is a smokeless tobacco product often mixed with lime, ash, black pepper and flavorings. Exposure to shammah has been linked with dental diseases and oral squamous cell carcinoma. There is limited literature on the prevalence of shammah and its role in pathobiology of oral cancer. In this study, we developed a cellular model to understand the effect of chronic shammah exposure on oral keratinocytes. Chronic exposure to shammah resulted in increased proliferation and invasiveness of non-transformed oral keratinocytes. Quantitative proteomics of shammah treated cells compared to untreated cells led to quantification of 4712 proteins of which 402 were found to be significantly altered. In addition, phosphoproteomics analysis of shammah treated cells compared to untreated revealed hyperphosphorylation of 36 proteins and hypophosphorylation of 83 proteins (twofold, p-value ≤ 0.05). Bioinformatics analysis of significantly altered proteins showed enrichment of proteins involved in extracellular matrix interactions, necroptosis and peroxisome mediated fatty acid oxidation. Kinase-Substrate Enrichment Analysis showed significant increase in activity of kinases such as ROCK1, RAF1, PRKCE and HIPK2 in shammah treated cells. These results provide better understanding of how shammah transforms non-neoplastic cells and warrants additional studies that may assist in improved early diagnosis and treatment of shammah induced oral cancer.