Unknown

Dataset Information

0

Spred-3 mutation and Ras/Raf/MAPK activation confer acquired resistance to EGFR tyrosine kinase inhibitor in an EGFR mutated NSCLC cell line


ABSTRACT:

Background

Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are standard treatment for advanced non-small cell lung cancer (NSCLC). However, the emergence of EGFR-TKIs resistance poses a big challenge to the treatment. Although several resistant mutations have been identified, our understanding of the mechanisms underlying acquired EGFR-TKIs resistance remains incomplete. This study aimed to identify novel mutations and mechanisms that could contribute to acquired EGFR-TKIs resistance in EGFR mutated NSCLC cells.

Methods

Erlotinib resistant cells (HCC827/ER cells) were generated from the EGFR mutated NSCLC cell line HCC827, and whole-exome sequencing was performed to identify gene mutations in HCC827/ER cells. The Spred-3 expression was determined using quantitative real-time PCR (qPCR) and Western blotting assays, and the p-p44/42, p44/42, p-Akt and Akt expression was determined using Western blotting. The half maximal inhibitory concentration (IC50 value) was measured using the MTS assay, and cell migration was detected with a Transwell migration assay.

Results

Whole-exome sequencing identified deletion mutation c.120delG at exon 1 of the Spred-3 gene, resulting in a p.E40fs change in amino acid, in HCC827/ER cells. The Spred-3 expression was much reduced in HCC827/ER cells as compared to the HCC827 cells at both mRNA and protein levels. Knocking out Spred-3 in HCC827 cells using CRISPR/Cas9 increased erlotinib resistance and cell migration, while overexpressing Spred-3 in HCC827/ER cells using a cDNA construct reduced erlotinib resistance and cell migration. We also showed the Ras/Raf/MAPK pathway was activated in HCC827/ER cells, and inhibiting ERK1/2 in HCC827/Spred-3-sgRNA cells resulted in reduced erlotinib resistance and cell migration.

Conclusions

The results of this study indicate that a loss-of-function mutation in Spred-3 resulted in activation of the Ras/Raf/MAPK pathway that confers resistance to EGFR-TKIs in NSCLC cells harboring an EGFR mutation.

SUBMITTER: He Z 

PROVIDER: S-EPMC8797694 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5739624 | biostudies-literature
| S-EPMC8608608 | biostudies-literature
| S-EPMC6624074 | biostudies-literature
| S-EPMC6987335 | biostudies-literature
| S-EPMC5592682 | biostudies-other
| S-EPMC6888213 | biostudies-literature
| S-EPMC4221550 | biostudies-literature
| S-EPMC8712335 | biostudies-literature
| S-EPMC6345925 | biostudies-literature
| S-EPMC8183739 | biostudies-literature