Tafenoquine and its derivatives as inhibitors for the Severe Acute Respiratory Syndrome Coronavirus 2.
Ontology highlight
ABSTRACT: The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely affected human lives around the world as well as the global economy. Therefore, effective treatments against COVID-19 are urgently needed. Here, we screened a library containing Food and Drug Administration (FDA)-approved compounds to identify drugs that could target the SARS-CoV-2 main protease (Mpro), which is indispensable for viral protein maturation and regard as an important therapeutic target. We identified anti-malarial drug tafenoquine (TFQ), which is approved for radical cure of Plasmodium vivax and malaria prophylaxis, as a top candidate to inhibit Mpro protease activity. The crystal structure of SARS-CoV-2 Mpro in complex with TFQ revealed that TFQ noncovalently bound to and reshaped the substrate binding pocket of Mpro by altering the loop region (residues 139-144) near the catalytic Cys145, which could block the catalysis of its peptide substrates. We also found that TFQ inhibited human transmembrane protease serine 2 (TMPRSS2). Furthermore, one TFQ derivative, compound 7, showed a better therapeutic index than TFQ on TMPRSS2, and may therefore inhibit the infectibility of SARS-CoV-2, including that of several mutant variants. These results suggest new potential strategies to block infection of SARS-CoV-2 and rising variants.
SUBMITTER: Chen Y
PROVIDER: S-EPMC8800562 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA