Unknown

Dataset Information

0

Long-Term Autonomic Thermoregulating Fabrics Based on Microencapsulated Phase Change Materials.


ABSTRACT: Microcapsules loaded with n-docosane as phase change material (mPCMs) for thermal energy storage with a phase change transition temperature in the range of 36-45 °C have been employed to impregnate cotton fabrics. Fabrics impregnated with 8 wt % of mPCMs provided 11 °C of temperature buffering effect during heating. On the cooling step, impregnated fabrics demonstrated 6 °C temperature increase for over 100 cycles of switching on/off of the heating source. Similar thermoregulating performance was observed for impregnated fabrics stored for 4 years (1500 days) at room temperature. Temperature buffering effect increased to 14 °C during heating cycle and temperature increase effect reached 9 °C during cooling cycle in the aged fabric composites. Both effects remained stable in aged fabrics for more than 100 heating/cooling cycles. Our study demonstrates high potential use of the microencapsulated n-docosane for thermal management applications, including high-technical textiles, footwear materials, and building thermoregulating covers and paints with high potential for commercial applications.

SUBMITTER: F De Castro P 

PROVIDER: S-EPMC8806139 | biostudies-literature | 2021 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Long-Term Autonomic Thermoregulating Fabrics Based on Microencapsulated Phase Change Materials.

F De Castro Paula P   Minko Sergiy S   Vinokurov Vladimir V   Cherednichenko Kirill K   Shchukin Dmitry G DG  

ACS applied energy materials 20211029 11


Microcapsules loaded with n-docosane as phase change material (mPCMs) for thermal energy storage with a phase change transition temperature in the range of 36-45 °C have been employed to impregnate cotton fabrics. Fabrics impregnated with 8 wt % of mPCMs provided 11 °C of temperature buffering effect during heating. On the cooling step, impregnated fabrics demonstrated 6 °C temperature increase for over 100 cycles of switching on/off of the heating source. Similar thermoregulating performance wa  ...[more]

Similar Datasets

| S-EPMC5456532 | biostudies-other
| S-EPMC5684416 | biostudies-literature
| S-EPMC5456425 | biostudies-other
| S-EPMC11644346 | biostudies-literature
| S-EPMC9386853 | biostudies-literature
| S-EPMC7143033 | biostudies-literature
| S-EPMC6526475 | biostudies-literature
| S-EPMC6776658 | biostudies-literature
| S-EPMC8434372 | biostudies-literature
| S-EPMC5171701 | biostudies-literature