Unknown

Dataset Information

0

High-speed atomic force microscopy reveals a three-state elevator mechanism in the citrate transporter CitS.


ABSTRACT: The secondary active transporter CitS shuttles citrate across the cytoplasmic membrane of gram-negative bacteria by coupling substrate translocation to the transport of two Na+ ions. Static crystal structures suggest an elevator type of transport mechanism with two states: up and down. However, no dynamic measurements have been performed to substantiate this assumption. Here, we use high-speed atomic force microscopy for real-time visualization of the transport cycle at the level of single transporters. Unexpectedly, instead of a bimodal height distribution for the up and down states, the experiments reveal movements between three distinguishable states, with protrusions of ∼0.5 nm, ∼1.0 nm, and ∼1.6 nm above the membrane, respectively. Furthermore, the real-time measurements show that the individual protomers of the CitS dimer move up and down independently. A three-state elevator model of independently operating protomers resembles the mechanism proposed for the aspartate transporter GltPh Since CitS and GltPh are structurally unrelated, we conclude that the three-state elevators have evolved independently.

SUBMITTER: Maity S 

PROVIDER: S-EPMC8833178 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7725780 | biostudies-literature
| S-EPMC7661283 | biostudies-literature
| S-EPMC5320997 | biostudies-literature
| S-EPMC8376356 | biostudies-literature
| S-EPMC7506678 | biostudies-literature
| S-EPMC4500952 | biostudies-literature
| S-EPMC3701170 | biostudies-literature
| S-EPMC4789755 | biostudies-literature
| S-EPMC10313165 | biostudies-literature
| S-EPMC1299191 | biostudies-literature