Unknown

Dataset Information

0

The METTL5-TRMT112 N6-methyladenosine methyltransferase complex regulates mRNA translation via 18S rRNA methylation.


ABSTRACT: Ribosomal RNAs (rRNAs) have long been known to carry chemical modifications, including 2'O-methylation, pseudouridylation, N6-methyladenosine (m6A), and N6,6-dimethyladenosine. While the functions of many of these modifications are unclear, some are highly conserved and occur in regions of the ribosome critical for mRNA decoding. Both 28S rRNA and 18S rRNA carry single m6A sites, and while the methyltransferase ZCCHC4 has been identified as the enzyme responsible for the 28S rRNA m6A modification, the methyltransferase responsible for the 18S rRNA m6A modification has remained unclear. Here, we show that the METTL5-TRMT112 methyltransferase complex installs the m6A modification at position 1832 of human 18S rRNA. Our work supports findings that TRMT112 is required for METTL5 stability and reveals that human METTL5 mutations associated with microcephaly and intellectual disability disrupt this interaction. We show that loss of METTL5 in human cancer cell lines and in mice regulates gene expression at the translational level; additionally, Mettl5 knockout mice display reduced body size and evidence of metabolic defects. While recent work has focused heavily on m6A modifications in mRNA and their roles in mRNA processing and translation, we demonstrate here that deorphanizing putative methyltransferase enzymes can reveal previously unappreciated regulatory roles for m6A in noncoding RNAs.

SUBMITTER: Sepich-Poore C 

PROVIDER: S-EPMC8857481 | biostudies-literature | 2022 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

The METTL5-TRMT112 N<sup>6</sup>-methyladenosine methyltransferase complex regulates mRNA translation via 18S rRNA methylation.

Sepich-Poore Caraline C   Zheng Zhong Z   Schmitt Emily E   Wen Kailong K   Zhang Zijie Scott ZS   Cui Xiao-Long XL   Dai Qing Q   Zhu Allen C AC   Zhang Linda L   Sanchez Castillo Arantxa A   Tan Haiyan H   Peng Junmin J   Zhuang Xiaoxi X   He Chuan C   Nachtergaele Sigrid S  

The Journal of biological chemistry 20220114 3


Ribosomal RNAs (rRNAs) have long been known to carry chemical modifications, including 2'O-methylation, pseudouridylation, N<sup>6</sup>-methyladenosine (m<sup>6</sup>A), and N<sup>6,6-</sup>dimethyladenosine. While the functions of many of these modifications are unclear, some are highly conserved and occur in regions of the ribosome critical for mRNA decoding. Both 28S rRNA and 18S rRNA carry single m<sup>6</sup>A sites, and while the methyltransferase ZCCHC4 has been identified as the enzyme  ...[more]

Similar Datasets

| S-EPMC6735865 | biostudies-literature
2019-07-15 | GSE128699 | GEO
| S-EPMC7534618 | biostudies-literature
| S-EPMC8720661 | biostudies-literature
| S-SCDT-EMBOR-2019-49863V1 | biostudies-other
2021-11-30 | PXD028832 | Pride
| PRJNA528519 | ENA
| S-EPMC8063911 | biostudies-literature
| S-EPMC8549223 | biostudies-literature
2020-08-03 | GSE138341 | GEO