Project description:A variant of the vga(A) gene (1,575 bp), encoding an ATP-binding cassette protein conferring resistance to streptogramin A and related antibiotics, was cloned from the chromosome of a Staphylococcus aureus clinical isolate and sequenced. The sequence of the variant was similar to that of the vga(A) gene (83.2% identity). However, the G+C content of the variant (35.6%) was higher than that of vga(A) (29%) and there was no cross hybridization between vga(A) and the variant at high stringency (> or =60 degrees C), the highest temperature at which a signal was detected being 55 degrees C. Unlike previous reports for vga(A) and vga(B), the variant of vga(A) may be present in multiple copies in the genome. These copies are chromosomal in some isolates and both chromosomal and plasmid-borne in others. Nucleotide sequences hybridizing at 65 degrees C with the vga(A) variant were found in all the staphylococcal strains harboring plasmids carrying both vga(B) and vat(B), which also encode resistance to streptogramin A.
Project description:We characterized a new transposon, Tn5406 (5,467 bp), in a clinical isolate of Staphylococcus aureus (BM3327). It carries a variant of vgaA, which encodes a putative ABC protein conferring resistance to streptogramin A but not to mixtures of streptogramins A and B. It also carries three putative genes, the products of which exhibit significant similarities (61 to 73% amino acid identity) to the three transposases of the staphylococcal transposon Tn554. Like Tn554, Tn5406 failed to generate target repeats. In BM3327, the single copy of Tn5406 was inserted into the chromosomal att554 site, which is the preferential insertion site of Tn554. In three other independent S. aureus clinical isolates, Tn5406 was either present as a single plasmid copy (BM3318), as two chromosomal copies (BM3252), or both in the chromosome and on a plasmid (BM3385). The Tn5406-carrying plasmids also contain two other genes, vgaB and vatB. The insertion sites of Tn5406 in BM3252 were studied: one copy was in att554, and one copy was in the additional SCCmec element. Amplification experiments revealed circular forms of Tn5406, indicating that this transposon might be active. To our knowledge, a transposon conferring resistance to streptogramin A and related compounds has not been previously described.
Project description:We characterized two new streptogramin A resistance genes from quinupristin-dalfopristin-resistant Enterococcus faecium JS79, which was selected from 79 E. faecium isolates lacking known genes encoding streptogramin A acetyltransferase. A 5,650-bp fragment of HindIII-digested plasmid DNA from E. faecium JS79 was cloned and sequenced. The fragment contained two open reading frames carrying resistance genes related to streptogramin A, namely, genes for an acetyltransferase and an ATP efflux pump. The first open reading frame comprised 648 bp encoding 216 amino acids with a predicted left-handed parallel β-helix domain structure; this new gene was designated vatH. [corrected] The second open reading frame consisted of 1,575 bp encoding 525 amino acids with two predicted ATPase binding cassette transporters comprised of Walker A, Walker B, and LSSG motifs; this gene was designated vgaD. vgaD is located 65 bp upstream from vatH, [corrected] was detected together with vatH [corrected] in 12 of 179 quinupristin-dalfopristin-resistant E. faecium isolates, and was located on the same plasmid. Also, the 5.6-kb HindIII-digested fragment which was observed in JS79 was detected in nine vgaD- and vatH-containing [corrected] E. faecium isolates by Southern hybridization. Therefore, it was expected that these two genes were strongly correlated with each other and that they may be composed of a transposon. Importantly, vgaD is the first identified ABC transporter conferring resistance to streptogramin A in E. faecium. Pulsed-field gel electrophoresis patterns and sequence types of vgaD- and vatH-containing [corrected] E. faecium isolates differed for isolates from humans and nonhumans.
Project description:Combinations of group A and B streptogramins (i.e., dalfopristin and quinupristin) are "last-resort" antibiotics for the treatment of infections caused by Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Resistance to streptogramins has arisen via multiple mechanisms, including the deactivation of the group A component by the large family of virginiamycin O-acetyltransferase (Vat) enzymes. Despite the structural elucidation performed for the VatD acetyltransferase, which provided a general molecular framework for activity, a detailed characterization of the essential catalytic and antibiotic substrate-binding determinants in Vat enzymes is still lacking. We have determined the crystal structure of S. aureus VatA in apo, virginiamycin M1- and acetyl-coenzyme A (CoA)-bound forms and provide an extensive mutagenesis and functional analysis of the structural determinants required for catalysis and streptogramin A recognition. Based on an updated genomic survey across the Vat enzyme family, we identified key conserved residues critical for VatA activity that are not part of the O-acetylation catalytic apparatus. Exploiting such constraints of the Vat active site may lead to the development of streptogramin A compounds that evade inactivation by Vat enzymes while retaining binding to their ribosomal target.
Project description:A gene almost identical to satG was isolated from an Enterococcus faecium strain. This gene was transferred to a Staphylococcus aureus recipient strain where it conferred resistance to streptogramin A. satG was found to be widely distributed among E. faecium strains but not detected among staphylococci.
Project description:Lactococcus garvieae, the causative agent of lactococcosis, has evolved strains that are highly resistant to antibiotics. Here, the 20,034-bp sequence of L. garvieae conjugative plasmid pKL0018 was determined. It contained two ermB genes and one tetS gene and a backbone more than 96% identical to that of pRE25, an Enterococcus faecalis plasmid from dry sausage.
Project description:Enterococcus faecium BM4145, a clinical isolate from urine, was resistant to streptogramin group A antibiotics by inactivation. The strain harbored a plasmid containing a gene, satA, responsible for this resistance; this gene was cloned and sequenced. It encoded SatA, a protein deduced to be 23,634 Da in mass and homologous with a new family of chloramphenicol acetyltransferases described in Agrobacterium tumefaciens, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The similarity of SatA to other acetyltransferases, LacA (thiogalactoside acetyltransferase) and CysE (serine acetyltransferase) from E. coli, and to two putative acetyltransferases, NodL from Rhizobium leguminosarum and Urf1 from E. coli, was also observed in a region considered to be the enzyme's active site. Acetylation experiments indicated that acetyl coenzyme A was necessary for SatA activity and that a single acetylated derivative of pristinamycin IIA was produced. Other members of the streptogramin A group such as virginiamycin M and RP54476 were also substrates for the enzyme. We conclude that resistance to the streptogramin A group of antibiotics in E. faecium BM4145 is due to acetylation by an enzyme related to the novel chloramphenicol acetyltransferase family.
Project description:A fifth gene cassette containing an aacC gene, aacCA5, was found in an aacCA5-aadA7 cassette array in a class 1 integron isolated from a multiply drug resistant Salmonella enterica serovar Kentucky strain. The AacC-A5 or AAC(3)-Ie acetyltransferase encoded by aacCA5 is related to other AAC(3)-I enzymes and confers resistance to gentamicin.
Project description:Streptogramins are polypeptide antibiotics inhibiting protein synthesis by the prokaryotic ribosome. Gram-positive organisms are susceptible to streptogramins, while most gram-negative bacteria are intrinsically resistant. We have found a genomic fragment from a Yersinia enterocolitica isolate with an open reading frame coding for a polypeptide similar to the virginiamycin acetyltransferases found in various plasmids from gram-positive bacteria. The susceptible Escherichia coli strain DB10 was transformed to resistance to the type A streptogramins and to mixed (A + B) streptogramins upon introduction of a plasmid containing that gene. In addition, we showed streptogramin acetylating activity in vitro dependent on the presence of the Y. enterocolitica sat gene. Southern blot hybridization experiments showed that the sat gene was present in all the Y. enterocolitica isolates examined. These data together show that the gene in the Y. enterocolitica chromosome encoded an active streptogramin acetyltransferase. The deduced sequence of the Y. enterocolitica Sat protein was close to those of sat gene products found in gram-positive bacteria and cyanobacteria, suggesting a common evolutionary origin.
Project description:Key messageA new selectable marker gene for stable transformation of the plastid genome was developed that is similarly efficient as the aadA, and produces no background of spontaneous resistance mutants. More than 25 years after its development for Chlamydomonas and tobacco, the transformation of the chloroplast genome still represents a challenging technology that is available only in a handful of species. The vast majority of chloroplast transformation experiments conducted thus far have relied on a single selectable marker gene, the spectinomycin resistance gene aadA. Although a few alternative markers have been reported, the aadA has remained unrivalled in efficiency and is, therefore, nearly exclusively used. The development of new marker genes for plastid transformation is of crucial importance to all efforts towards extending the species range of the technology as well as to those applications in basic research, biotechnology and synthetic biology that involve the multistep engineering of plastid genomes. Here, we have tested a bifunctional resistance gene for its suitability as a selectable marker for chloroplast transformation. The bacterial enzyme aminoglycoside acetyltransferase(6')-Ie/aminoglycoside phosphotransferase(2″)-Ia possesses an N-terminal acetyltransferase domain and a C-terminal phosphotransferase domain that can act synergistically and detoxify aminoglycoside antibiotics highly efficiently. We report that, in combination with selection for resistance to the aminoglycoside tobramycin, the aac(6')-Ie/aph(2″)-Ia gene represents an efficient marker for plastid transformation in that it produces similar numbers of transplastomic lines as the spectinomycin resistance gene aadA. Importantly, no spontaneous antibiotic resistance mutants appear under tobramycin selection.