Ontology highlight
ABSTRACT:
SUBMITTER: Schiff L
PROVIDER: S-EPMC8956598 | biostudies-literature | 2022 Mar
REPOSITORIES: biostudies-literature
Schiff Lauren L Migliori Bianca B Chen Ye Y Carter Deidre D Bonilla Caitlyn C Hall Jenna J Fan Minjie M Tam Edmund E Ahadi Sara S Fischbacher Brodie B Geraschenko Anton A Hunter Christopher J CJ Venugopalan Subhashini S DesMarteau Sean S Narayanaswamy Arunachalam A Jacob Selwyn S Armstrong Zan Z Ferrarotto Peter P Williams Brian B Buckley-Herd Geoff G Hazard Jon J Goldberg Jordan J Coram Marc M Otto Reid R Baltz Edward A EA Andres-Martin Laura L Pritchard Orion O Duren-Lubanski Alyssa A Daigavane Ameya A Reggio Kathryn K Nelson Phillip C PC Frumkin Michael M Solomon Susan L SL Bauer Lauren L Aiyar Raeka S RS Schwarzbach Elizabeth E Noggle Scott A SA Monsma Frederick J FJ Paull Daniel D Berndl Marc M Yang Samuel J SJ Johannesson Bjarki B
Nature communications 20220325 1
Drug discovery for diseases such as Parkinson's disease are impeded by the lack of screenable cellular phenotypes. We present an unbiased phenotypic profiling platform that combines automated cell culture, high-content imaging, Cell Painting, and deep learning. We applied this platform to primary fibroblasts from 91 Parkinson's disease patients and matched healthy controls, creating the largest publicly available Cell Painting image dataset to date at 48 terabytes. We use fixed weights from a co ...[more]