Automatic detection of pneumonia in chest X-ray images using textural features.
Ontology highlight
ABSTRACT: Fast and accurate diagnosis is critical for the triage and management of pneumonia, particularly in the current scenario of a COVID-19 pandemic, where this pathology is a major symptom of the infection. With the objective of providing tools for that purpose, this study assesses the potential of three textural image characterisation methods: radiomics, fractal dimension and the recently developed superpixel-based histon, as biomarkers to be used for training Artificial Intelligence (AI) models in order to detect pneumonia in chest X-ray images. Models generated from three different AI algorithms have been studied: K-Nearest Neighbors, Support Vector Machine and Random Forest. Two open-access image datasets were used in this study. In the first one, a dataset composed of paediatric chest X-ray, the best performing generated models achieved an 83.3% accuracy with 89% sensitivity for radiomics, 89.9% accuracy with 93.6% sensitivity for fractal dimension and 91.3% accuracy with 90.5% sensitivity for superpixels based histon. Second, a dataset derived from an image repository developed primarily as a tool for studying COVID-19 was used. For this dataset, the best performing generated models resulted in a 95.3% accuracy with 99.2% sensitivity for radiomics, 99% accuracy with 100% sensitivity for fractal dimension and 99% accuracy with 98.6% sensitivity for superpixel-based histons. The results confirm the validity of the tested methods as reliable and easy-to-implement automatic diagnostic tools for pneumonia.
SUBMITTER: Ortiz-Toro C
PROVIDER: S-EPMC8966154 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA