Project description:Glaucoma is a group of eye diseases characterized by alterations in the contour of the optic nerve head (ONH), with corresponding visual field defects and progressive loss of retinal ganglion cells (RGCs). This progressive RGC death is considered to originate in axonal injury caused by compression of the axon bundles in the ONH. However, the molecular pathomechanisms of axonal injury-induced RGC death are not yet well understood. Here, we used RNA sequencing (RNA-seq) to examine transcriptome changes in rat retinas 2 days after optic nerve transection (ONT), and then used computational techniques to predict the resulting alterations in the transcriptional regulatory network. RNA-seq revealed 267 differentially expressed genes after ONT, 218 of which were annotated and 49 unannotated. We also identified differentially expressed transcripts, including potentially novel isoforms. An in silico pathway analysis predicted that CREB1 was the most significant upstream regulator. Thus, this study identified genes and pathways that may be involved in the pathomechanisms of axonal injury. We believe that our data should serve as a valuable resource to understand the molecular processes that define axonal injury-driven RGC death and to discover novel therapeutic targets for glaucoma.
Project description:The degeneration of retinal ganglion cells (RGCs) often causes irreversible vision impairment. Prevention of RGC degeneration can prevent or delay the deterioration of visual function. The present study aimed to investigate retinal metabolic profiles following optic nerve transection (ONT) injury and identify the potential metabolic targets for the prevention of RGC degeneration. Retinal samples were dissected from ONT group and non‑ONT group. The untargeted metabolomics were carried out using liquid chromatography‑tandem mass spectrometry. The involved pathways and biomarkers were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and MetaboAnalyst 5.0. In the ONT group, 689 disparate metabolites were detected, including lipids and lipid‑like molecules. A total of 122 metabolites were successfully annotated and enriched in 50 KEGG pathways. Among them, 'sphingolipid metabolism' and 'primary bile acid biosynthesis' were identified involved in RGC degeneration. A total of five metabolites were selected as the candidate biomarkers for detecting RGC degeneration with an AUC value of 1. The present study revealed that lipid‑related metabolism was involved in the pathogenesis of retinal neurodegeneration. Taurine, taurochenodesoxycholic acid, taurocholic acid (TCA), sphingosine, and galabiosylceramide are shown as the promising biomarkers for the diagnosis of RGC degeneration.
Project description:A major risk factor for glaucomatous optic neuropathy is the level of intraocular pressure (IOP), which can lead to retinal ganglion cell axon injury and cell death. The optic nerve has a rostral unmyelinated portion at the optic nerve head followed by a caudal myelinated region. The unmyelinated region is differentially susceptible to IOP-induced damage in rodent models and in human glaucoma. While several studies have analyzed gene expression changes in the mouse optic nerve following optic nerve injury, few were designed to consider the regional gene expression differences that exist between these distinct areas. We performed bulk RNA-sequencing on the retina and on separately micro-dissected unmyelinated and myelinated optic nerve regions from naïve C57BL/6 mice, mice after optic nerve crush, and mice with microbead-induced experimental glaucoma (total = 36). Gene expression patterns in the naïve unmyelinated optic nerve showed significant enrichment of the Wnt, Hippo, PI3K-Akt, and transforming growth factor β pathways, as well as extracellular matrix-receptor and cell membrane signaling pathways, compared to the myelinated optic nerve and retina. Gene expression changes induced by both injuries were more extensive in the myelinated optic nerve than the unmyelinated region, and greater after nerve crush than glaucoma. Changes three and fourteen days after injury largely subsided by six weeks. Gene markers of reactive astrocytes did not consistently differ between injury states. Overall, the transcriptomic phenotype of the mouse unmyelinated optic nerve was significantly different from immediately adjacent tissues, likely dominated by expression in astrocytes, whose junctional complexes are inherently important in responding to IOP elevation.
Project description:A major risk factor for glaucomatous optic neuropathy is the level of intraocular pressure (IOP), which can lead to retinal ganglion cell axon injury and cell death. The optic nerve has a rostral unmyelinated portion at the optic nerve head followed by a caudal myelinated region. The unmyelinated region is differentially susceptible to IOP-induced damage in rodent models and in human glaucoma. While several studies have analyzed gene expression changes in the mouse optic nerve following optic nerve injury, few were designed to consider the regional gene expression differences that exist between these distinct areas. We performed bulk RNA-sequencing on the retina and on separately micro-dissected unmyelinated and myelinated optic nerve regions from naïve C57BL/6 mice, mice after optic nerve crush, and mice with microbead-induced experimental glaucoma (total = 36). Gene expression patterns in the naïve unmyelinated optic nerve showed significant enrichment of the Wnt, Hippo, PI3K-Akt, and transforming growth factor β pathways, as well as extracellular matrix–receptor and cell membrane signaling pathways, compared to the myelinated optic nerve and retina. Gene expression changes induced by both injuries were more extensive in the myelinated optic nerve than the unmyelinated region, and greater after nerve crush than glaucoma. Changes present three and fourteen days after injury largely subsided by six weeks. Gene markers of reactive astrocytes did not consistently differ between injury states. Overall, the transcriptomic phenotype of the mouse unmyelinated optic nerve was significantly different from immediately adjacent tissues, likely dominated by expression in astrocytes, whose junctional complexes are inherently important in responding to IOP elevation.
Project description:PurposeA time-course analysis of gene regulation in the adult rat retina after intraorbital nerve crush (IONC) and intraorbital nerve transection (IONT).MethodsRNA was extracted from adult rat retinas undergoing either IONT or IONC at increasing times post-lesion. Affymetrix RAE230.2 arrays were hybridized and analyzed. Statistically regulated genes were annotated and functionally clustered. Arrays were validated by means of quantative reverse transcription polymerase chain reaction (qRT-PCR) on ten regulated genes at two times post-lesion. Western blotting and immunohistofluorescence for four pro-apoptotic proteins were performed on naïve and injured retinas. Finally, custom signaling maps for IONT- and IONC-induced death response were generated (MetaCore, Genego Inc.).ResultsHere we show that over time, 3,219 sequences were regulated after IONT and 1,996 after IONC. Out of the total of regulated sequences, 1,078 were commonly regulated by both injuries. Interestingly, while IONT mainly triggers a gene upregulation-sustained over time, IONC causes a transitory downregulation. Functional clustering identified the regulation of high interest biologic processes, most importantly cell death wherein apoptosis was the most significant cluster. Ten death-related genes upregulated by both injuries were used for array validation by means of qRT-PCR. In addition, western blotting and immunohistofluorescence of total and active Caspase 3 (Casp3), tumor necrosis factor receptor type 1 associated death domain (TRADD), tumor necrosis factor receptor superfamily member 1a (TNFR1a), and c-fos were performed to confirm their protein regulation and expression pattern in naïve and injured retinas. These analyses demonstrated that for these genes, protein regulation followed transcriptional regulation and that these pro-apoptotic proteins were expressed by retinal ganglion cells (RGCs). MetaCore-based death-signaling maps show that several apoptotic cascades were regulated in the retina following optic nerve injury and highlight the similarities and differences between IONT and IONC in cell death profiling.ConclusionsThis comprehensive time course retinal transcriptome study comparing IONT and IONC lesions provides a unique valuable tool to understand the molecular mechanisms underlying optic nerve injury and to design neuroprotective protocols.
Project description:BackgroundThe oral immunomodulatory agent laquinimod is currently evaluated for multiple sclerosis (MS) treatment. Phase II and III studies demonstrated a reduction of degenerative processes. In addition to anti-inflammatory effects, laquinimod might have neuroprotective properties, but its impact on the visual system, which is often affected by MS, is unknown. The aim of our study was to investigate potential protective effects of laquinimod on the optic nerve and retina in an experimental autoimmune encephalomyelitis (EAE) model.MethodsWe induced EAE in C57/BL6 mice via MOG35-55 immunization. Animals were divided into an untreated EAE group, three EAE groups receiving laquinimod (1, 5, or 25 mg/kg daily), starting the day post-immunization, and a non-immunized control group. Thirty days post-immunization, scotopic electroretinograms were carried out, and mice were sacrificed for histopathology (HE, LFB), immunohistochemistry (MBP, Iba1, Tmem119, F4/80, GFAP, vimentin, Brn-3a, cleaved caspase 3) of the optic nerve and retina, and retinal qRT-PCR analyses (Brn-3a, Iba1, Tmem119, AMWAP, CD68, GFAP). To evaluate the effect of a therapeutic approach, EAE animals were treated with 25 mg/kg laquinimod from day 16 when 60% of the animals had developed clinical signs of EAE.ResultsLaquinimod reduced neurological EAE symptoms and improved the neuronal electrical output of the inner nuclear layer compared to untreated EAE mice. Furthermore, cellular infiltration, especially recruited phagocytes, and demyelination in the optic nerve were reduced. Microglia were diminished in optic nerve and retina. Retinal macroglial signal was reduced under treatment, whereas in the optic nerve macroglia were not affected. Additionally, laquinimod preserved retinal ganglion cells and reduced apoptosis. A later treatment with laquinimod in a therapeutic approach led to a reduction of clinical signs and to an improved b-wave amplitude. However, no changes in cellular infiltration and demyelination of the optic nerves were observed. Also, the number of retinal ganglion cells remained unaltered.ConclusionFrom our study, we deduce neuroprotective and anti-inflammatory effects of laquinimod on the optic nerve and retina in EAE mice, when animals were treated before any clinical signs were noted. Given the fact that the visual system is frequently affected by MS, the agent might be an interesting subject of further neuro-ophthalmic investigations.
Project description:PurposeTo investigate the optic nerve and macular morphology in patients with optic nerve hypoplasia (ONH) using spectral-domain optical coherence tomography (SD OCT).DesignProspective, cross-sectional, observational study.SubjectsA total of 16 participants with ONH (10 female and 6 male; mean age, 17.2 years; 6 bilateral involvement) and 32 gender-, age-, ethnicity-, and refraction-matched healthy controls.MethodsHigh-resolution SD OCT (Copernicus [Optopol Technology S.A., Zawiercie, Poland], 3 μm resolution) and handheld SD OCT (Bioptigen Inc [Research Triangle Park, NC], 2.6 μm resolution) devices were used to acquire horizontal scans through the center of the optic disc and macula.Main outcome measuresHorizontal optic disc/cup and rim diameters, cup depth, peripapillary retinal nerve fiber layer (RNFL), and thickness of individual retinal layers in participants with ONH and in controls.ResultsPatients with ONH had significantly smaller discs (P < 0.03 and P < 0.001 compared with unaffected eye and healthy controls, respectively), horizontal cup diameter (P < 0.02 for both), and cup depth (P < 0.02 and P < 0.01, respectively). In the macula, significantly thinner RNFL (nasally), ganglion cell layer (GCL) (nasally and temporally), inner plexiform layer (IPL) (nasally), outer nuclear layer (ONL) (nasally), and inner segment (centrally and temporally) were found in patients with ONH compared with the control group (P < 0.05 for all comparisons). Continuation of significantly thicker GCL, IPL, and outer plexiform layer in the central retinal area (i.e., foveal hypoplasia) was found in more than 80% of patients with ONH. Clinically unaffected fellow eyes of patients with ONH showed mild features of underdevelopment. Visual acuity and presence of septo-optic dysplasia were associated with changes in GCL and IPL. Sensitivity and specificity for the detection of ONH based on disc and retinal optical coherence tomography (OCT) parameters were >80%.ConclusionsOur study provides evidence of retinal changes in ONH. In addition to thinning of retina layers mainly involving the RNFL and GCL, signs reminiscent of foveal hypoplasia were observed in patients with ONH. Optic nerve and foveal parameters measured using OCT showed high sensitivity and specificity for detecting ONH, demonstrating their useful for clinical diagnosis.
Project description:To examine the difference between primary and secondary retinal ganglion cell (RGC) degeneration, the protein expression at four regions of retina including superior, temporal, inferior and nasal quadrant in a rat model of partial optic nerve transection (pONT) using 2‑D Fluorescence Difference Gel Electrophoresis (DIGE) were investigated. Unilateral pONT was performed on the temporal side of optic nerves of adult Wistar rats to separate primary and secondary RGC loss. Topographical quantification of RGCs labeled by Rbpms antibody and analysis of axonal injury by grading of optic nerve damage at 1 week (n=8) and 8 weeks (n=15) after pONT demonstrated early RGC loss at temporal region, which is considered as primary RGC degeneration and progressing RGC loss at nasal region, which is considered as secondary RGC degeneration. Early protein expression in each retinal quadrant (n=4) at 2 weeks after pONT was compared with the corresponding quadrant in the contralateral control eye by DIGE. For all comparisons, 24 differentially expressed proteins (>1.2‑fold; P<0.05; ≥3 non‑duplicated peptide matches) were identified by mass spectrometry (MS). Interestingly, in the nasal retina, serum albumin and members of crystallin family, including αA, αB, βA2, βA3, βB2 and gamma S indicating stress response were upregulated. By contrast, only αB and βA2 crystallin proteins were altered in temporal quadrant. In the superior and inferior quadrants, βB2 crystallin, keratin type I, S‑arrestin and lamin‑B1 were upregulated, while heat shock cognate 71 kDa protein and heterogeneous nuclear ribonucleoproteins A2/B1 were downregulated. In summary, the use of DIGE followed by MS is useful to detect early regional protein regulation in the retina after localized optic nerve injury.
Project description:During chewing, movements and deformations of the tongue are coordinated with jaw movements to manage and manipulate the bolus and avoid injury. Individuals with injuries to the lingual nerve report both tongue injuries due to biting and difficulties in chewing, primarily because of impaired bolus management, suggesting that jaw-tongue coordination relies on intact lingual afferents. Here, we investigate how unilateral lingual nerve (LN) transection affects jaw-tongue coordination in an animal model (pig, Sus scrofa). Temporal coordination between jaw pitch (opening-closing) and 1) anteroposterior tongue position (i.e., protraction-retraction), 2) anteroposterior tongue length, and 3) mediolateral tongue width was compared between pre- and post-LN transection using cross-correlation analyses. Overall, following LN transection, the lag between jaw pitch and the majority of tongue kinematics decreased significantly, demonstrating that sensory loss from the tongue alters jaw-tongue coordination. In addition, decrease in jaw-tongue lag suggests that, following LN transection, tongue movements and deformations occur earlier in the gape cycle than when the lingual sensory afferents are intact. If the velocity of tongue movements and deformations remains constant, earlier occurrence can reflect less pronounced movements, possibly to avoid injuries. The results of this study demonstrate that lingual afferents participate in chewing by assisting with coordinating the timing of jaw and tongue movements. The observed changes may affect bolus management performance and/or may represent protective strategies because of altered somatosensory awareness of the tongue.NEW & NOTEWORTHY Chewing requires coordination between tongue and jaw movements. We compared the coordination of tongue movements and deformation relative to jaw opening-closing movements pre- and post-lingual nerve transection during chewing in pigs. These experiments reveal that the timing of jaw-tongue coordination is altered following unilateral disruption of sensory information from the tongue. Therefore, maintenance of jaw-tongue coordination requires bilateral sensory information from the tongue.
Project description:Zebrafish spontaneously regenerate the retina after injury. Although the gene expression profile has been extensively studied in this species during regeneration, this does not reflect protein function. To further understand the regenerative process in the zebrafish, we compared the proteomic profile of the retina during injury and upon regeneration. Using two-dimensional difference gel electrophoresis (2D-DIGE) and label-free quantitative proteomics (quadrupole time of flight LC-MS/MS), we analysed the retina of adult longfin wildtype zebrafish at 0, 3 and 18 days after Ouabain injection. Gene ontology analysis indicates reduced metabolic processing, and increase in fibrin clot formation, with significant upregulation of fibrinogen gamma polypeptide, apolipoproteins A-Ib and A-II, galectin-1, and vitellogenin-6 during degeneration when compared to normal retina. In addition, cytoskeleton and membrane transport proteins were considerably altered during regeneration, with the highest fold upregulation observed for tubulin beta 2 A, histone H2B and brain type fatty acid binding protein. Key proteins identified in this study may play an important role in the regeneration of the zebrafish retina and investigations on the potential regulation of these proteins may lead to the design of protocols to promote endogenous regeneration of the mammalian retina following retinal degenerative disease.