Preparation, characterization and application in cobalt ion adsorption using nanoparticle films of hybrid copper-nickel hexacyanoferrate.
Ontology highlight
ABSTRACT: Different mole ratios (n Cu : n Ni = x : y) of hybrid copper-nickel metal hexacyanoferrates (Cu x Ni y HCFs) were prepared to explore their morphologies, structure, electrochemical properties and the feasibility of electrochemical adsorption of cobalt ions. Cyclic voltammetry (CV), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) indicated that the x : y ratio of Cu x Ni y HCF nanoparticles can be easily controlled as designed using a wet chemical coprecipitation method. The crystallite size and formal potential of Cu x Ni y HCF films showed an insignificant change when 0 ≤ x : y < 0.3. Given the shape of the CV curves, this might be due to Cu2+ ions being inserted into the NiHCF framework as countercations to maintain the electrical neutrality of the structure. On the other hand, crystallite size depended linearly on the x : y ratio when x : y > 0.3. This is because Cu tended to replace Ni sites in the lattice structure at higher molar ratios of x : y. Cu x Ni y HCF films inherited good electrochemical reversibility from the CuHCFs, in view of the cyclic voltammograms; in particular, Cu1Ni2HCF exhibited long-term cycling stability and high surface coverage. The adsorption of Co2+ fitted the Langmuir isotherm model well, and the kinetic data can be well described by a pseudo-second order model, which may imply that Co2+ adsorption is controlled by chemical adsorption. The diffusion process was dominated by both intraparticle diffusion and surface diffusion.
SUBMITTER: Long X
PROVIDER: S-EPMC9061196 | biostudies-literature | 2019 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA