Unknown

Dataset Information

0

Enhanced stability of an intrinsically disordered protein against proteolytic cleavage through interactions with silver nanoparticles.


ABSTRACT: Intrinsically disordered proteins (IDPs), being sensitive to proteolytic degradation both in vitro and in vivo, can be stabilized by the interactions with various binding partners. Here, we show for the first time that silver nanoparticles (AgNPs) have the ability to enhance the half-life of an IDP, thereby rendering it stable for a month against proteolytic degradation. The conjugate of the unstructured linker domain of human insulin-like growth factor binding protein-2 (L-hIGFBP2) with 10 nm citrate-capped AgNPs was studied using two-dimensional NMR spectroscopy and other biophysical techniques. Our studies reveal the extent and nature of residue-specific interactions of the IDP with AgNPs. These interactions mask proteolysis-prone sites of the IDP and stabilize it. This study opens new avenues for the design of appropriate nanoparticles targeting IDPs and for storage, stabilization and delivery of IDPs into cells in a stable form.

SUBMITTER: Malik SA 

PROVIDER: S-EPMC9071183 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhanced stability of an intrinsically disordered protein against proteolytic cleavage through interactions with silver nanoparticles.

Malik Shahid A SA   Mondal Somnath S   Atreya Hanudatta S HS  

RSC advances 20190912 49


Intrinsically disordered proteins (IDPs), being sensitive to proteolytic degradation both <i>in vitro</i> and <i>in vivo</i>, can be stabilized by the interactions with various binding partners. Here, we show for the first time that silver nanoparticles (AgNPs) have the ability to enhance the half-life of an IDP, thereby rendering it stable for a month against proteolytic degradation. The conjugate of the unstructured linker domain of human insulin-like growth factor binding protein-2 (L-hIGFBP2  ...[more]

Similar Datasets

| S-EPMC7277182 | biostudies-literature
| S-EPMC10038935 | biostudies-literature
| S-EPMC5358802 | biostudies-literature
| S-EPMC6952228 | biostudies-literature
| S-EPMC10516966 | biostudies-literature
| S-EPMC3800252 | biostudies-literature
| S-EPMC9657728 | biostudies-literature
| S-EPMC5576569 | biostudies-literature
| S-EPMC5008109 | biostudies-literature
2019-01-02 | GSE90762 | GEO