Unknown

Dataset Information

0

Loss of α-actinin-3 confers protection from eccentric contraction damage in fast-twitch EDL muscles from aged mdx dystrophic mice by reducing pathological fibre branching.


ABSTRACT: The common null polymorphism (R577X) in the ACTN3 gene is present in over 1.5 billion people worldwide and results in the absence of the protein α-actinin-3 from the Z-discs of fast-twitch skeletal muscle fibres. We have previously reported that this polymorphism is a modifier of dystrophin-deficient Duchenne Muscular Dystrophy. To investigate the mechanism underlying this, we use a double knockout (dk)Actn3KO/mdx (dKO) mouse model, which lacks both dystrophin and sarcomere α-actinin-3. We used dKO mice and mdx dystrophic mice at 12 months (aged) to investigate the correlation between morphological changes to the fast-twitch dKO EDL and the reduction in force deficit produced by an in vitro eccentric contraction protocol. In the aged dKO mouse, we found a marked reduction in fibre branching complexity that correlated with protection from eccentric contraction induced force deficit. Complex branches in the aged dKO EDL fibres (28%) were substantially reduced compared to aged mdx EDL fibres (68%), and this correlates with a graded force loss over three eccentric contractions for dKO muscles (~36% after first contraction, ~66% overall) compared to an abrupt drop in mdx upon the first eccentric contraction (~75% after first contraction, ~89% after three contractions). In dKO, protection from eccentric contraction damage was linked with a doubling of SERCA1 pump density the EDL. We propose that the increased oxidative metabolism of fast-twitch glycolytic fibres characteristic of the null polymorphism (R577X) and increase in SR Ca2+ pump proteins reduces muscle fibre branching and decreases susceptibility to eccentric injury in the dystrophinopathies.

SUBMITTER: Kiriaev L 

PROVIDER: S-EPMC9071495 | biostudies-literature | 2022 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Loss of α-actinin-3 confers protection from eccentric contraction damage in fast-twitch EDL muscles from aged mdx dystrophic mice by reducing pathological fibre branching.

Kiriaev Leonit L   Houweling Peter J PJ   North Kathryn N KN   Head Stewart I SI  

Human molecular genetics 20220501 9


The common null polymorphism (R577X) in the ACTN3 gene is present in over 1.5 billion people worldwide and results in the absence of the protein α-actinin-3 from the Z-discs of fast-twitch skeletal muscle fibres. We have previously reported that this polymorphism is a modifier of dystrophin-deficient Duchenne Muscular Dystrophy. To investigate the mechanism underlying this, we use a double knockout (dk)Actn3KO/mdx (dKO) mouse model, which lacks both dystrophin and sarcomere α-actinin-3. We used  ...[more]

Similar Datasets

| S-EPMC9971923 | biostudies-literature
| S-EPMC3591173 | biostudies-literature
| S-EPMC7175239 | biostudies-literature
| S-EPMC6374364 | biostudies-literature
2020-10-06 | GSE150220 | GEO
| S-EPMC2493563 | biostudies-literature
| S-EPMC10166835 | biostudies-literature
| S-EPMC5448157 | biostudies-literature
| S-EPMC2835139 | biostudies-literature
| S-EPMC4365874 | biostudies-other