Unknown

Dataset Information

0

Giant Extrinsic Spin Hall Effect in Platinum-Titanium Oxide Nanocomposite Films.


ABSTRACT: Although the spin Hall effect provides a pathway for efficient and fast current-induced manipulation of magnetization, application of spin-orbit torque magnetic random access memory with low power dissipation is still limited to spin Hall materials with low spin Hall angles or very high resistivities. This work reports a group of spin Hall materials, Pt1 -x (TiO2 )x nanocomposites, that combines a giant spin Hall effect with a low resistivity. The spin Hall angle of Pt1 -x (TiO2 )x in an yttrium iron garnet/Pt1 -x (TiO2 )x double-layer heterostructure is estimated from a combination of ferromagnetic resonance, spin pumping, and inverse spin Hall experiments. A giant spin Hall angle 1.607 ± 0.04 is obtained in a Pt0.94 (TiO2 )0.06 nanocomposite film, which is an increase by an order of magnitude compared with 0.051 ± 0.002 in pure Pt thin film under the same conditions. The great enhancement of spin Hall angle is attributed to strong side-jump induced by TiO2 impurities. These findings provide a new nanocomposite spin Hall material combining a giant spin Hall angle, low resistivity and excellent process compatibility with semiconductors for developing highly efficiency current-induced magnetization switching memory devices and logic devices.

SUBMITTER: Xu X 

PROVIDER: S-EPMC9165503 | biostudies-literature | 2022 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Giant Extrinsic Spin Hall Effect in Platinum-Titanium Oxide Nanocomposite Films.

Xu Xinkai X   Zhang Dainan D   Liu Bo B   Meng Hao H   Xu Jiapeng J   Zhong Zhiyong Z   Tang Xiaoli X   Zhang Huaiwu H   Jin Lichuan L  

Advanced science (Weinheim, Baden-Wurttemberg, Germany) 20220407 16


Although the spin Hall effect provides a pathway for efficient and fast current-induced manipulation of magnetization, application of spin-orbit torque magnetic random access memory with low power dissipation is still limited to spin Hall materials with low spin Hall angles or very high resistivities. This work reports a group of spin Hall materials, Pt<sub>1</sub> <sub>-x</sub> (TiO<sub>2</sub> )<sub>x</sub> nanocomposites, that combines a giant spin Hall effect with a low resistivity. The spin  ...[more]

Similar Datasets

| S-EPMC6081370 | biostudies-literature
| S-EPMC7804464 | biostudies-literature
| S-EPMC7275749 | biostudies-literature
| S-EPMC7735746 | biostudies-literature
| S-EPMC5943254 | biostudies-literature
| S-EPMC6450695 | biostudies-literature
| S-EPMC5522398 | biostudies-literature
| S-EPMC7419544 | biostudies-literature
| S-EPMC7371710 | biostudies-literature
| S-EPMC7787480 | biostudies-literature