Unknown

Dataset Information

0

Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States.


ABSTRACT: Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.

SUBMITTER: Cramer EY 

PROVIDER: S-EPMC9169655 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States.

Cramer Estee Y EY   Ray Evan L EL   Lopez Velma K VK   Bracher Johannes J   Brennen Andrea A   Castro Rivadeneira Alvaro J AJ   Gerding Aaron A   Gneiting Tilmann T   House Katie H KH   Huang Yuxin Y   Jayawardena Dasuni D   Kanji Abdul H AH   Khandelwal Ayush A   Le Khoa K   Mühlemann Anja A   Niemi Jarad J   Shah Apurv A   Stark Ariane A   Wang Yijin Y   Wattanachit Nutcha N   Zorn Martha W MW   Gu Youyang Y   Jain Sansiddh S   Bannur Nayana N   Deva Ayush A   Kulkarni Mihir M   Merugu Srujana S   Raval Alpan A   Shingi Siddhant S   Tiwari Avtansh A   White Jerome J   Abernethy Neil F NF   Woody Spencer S   Dahan Maytal M   Fox Spencer S   Gaither Kelly K   Lachmann Michael M   Meyers Lauren Ancel LA   Scott James G JG   Tec Mauricio M   Srivastava Ajitesh A   George Glover E GE   Cegan Jeffrey C JC   Dettwiller Ian D ID   England William P WP   Farthing Matthew W MW   Hunter Robert H RH   Lafferty Brandon B   Linkov Igor I   Mayo Michael L ML   Parno Matthew D MD   Rowland Michael A MA   Trump Benjamin D BD   Zhang-James Yanli Y   Chen Samuel S   Faraone Stephen V SV   Hess Jonathan J   Morley Christopher P CP   Salekin Asif A   Wang Dongliang D   Corsetti Sabrina M SM   Baer Thomas M TM   Eisenberg Marisa C MC   Falb Karl K   Huang Yitao Y   Martin Emily T ET   McCauley Ella E   Myers Robert L RL   Schwarz Tom T   Sheldon Daniel D   Gibson Graham Casey GC   Yu Rose R   Gao Liyao L   Ma Yian Y   Wu Dongxia D   Yan Xifeng X   Jin Xiaoyong X   Wang Yu-Xiang YX   Chen YangQuan Y   Guo Lihong L   Zhao Yanting Y   Gu Quanquan Q   Chen Jinghui J   Wang Lingxiao L   Xu Pan P   Zhang Weitong W   Zou Difan D   Biegel Hannah H   Lega Joceline J   McConnell Steve S   Nagraj V P VP   Guertin Stephanie L SL   Hulme-Lowe Christopher C   Turner Stephen D SD   Shi Yunfeng Y   Ban Xuegang X   Walraven Robert R   Hong Qi-Jun QJ   Kong Stanley S   van de Walle Axel A   Turtle James A JA   Ben-Nun Michal M   Riley Steven S   Riley Pete P   Koyluoglu Ugur U   DesRoches David D   Forli Pedro P   Hamory Bruce B   Kyriakides Christina C   Leis Helen H   Milliken John J   Moloney Michael M   Morgan James J   Nirgudkar Ninad N   Ozcan Gokce G   Piwonka Noah N   Ravi Matt M   Schrader Chris C   Shakhnovich Elizabeth E   Siegel Daniel D   Spatz Ryan R   Stiefeling Chris C   Wilkinson Barrie B   Wong Alexander A   Cavany Sean S   España Guido G   Moore Sean S   Oidtman Rachel R   Perkins Alex A   Kraus David D   Kraus Andrea A   Gao Zhifeng Z   Bian Jiang J   Cao Wei W   Lavista Ferres Juan J   Li Chaozhuo C   Liu Tie-Yan TY   Xie Xing X   Zhang Shun S   Zheng Shun S   Vespignani Alessandro A   Chinazzi Matteo M   Davis Jessica T JT   Mu Kunpeng K   Pastore Y Piontti Ana A   Xiong Xinyue X   Zheng Andrew A   Baek Jackie J   Farias Vivek V   Georgescu Andreea A   Levi Retsef R   Sinha Deeksha D   Wilde Joshua J   Perakis Georgia G   Bennouna Mohammed Amine MA   Nze-Ndong David D   Singhvi Divya D   Spantidakis Ioannis I   Thayaparan Leann L   Tsiourvas Asterios A   Sarker Arnab A   Jadbabaie Ali A   Shah Devavrat D   Della Penna Nicolas N   Celi Leo A LA   Sundar Saketh S   Wolfinger Russ R   Osthus Dave D   Castro Lauren L   Fairchild Geoffrey G   Michaud Isaac I   Karlen Dean D   Kinsey Matt M   Mullany Luke C LC   Rainwater-Lovett Kaitlin K   Shin Lauren L   Tallaksen Katharine K   Wilson Shelby S   Lee Elizabeth C EC   Dent Juan J   Grantz Kyra H KH   Hill Alison L AL   Kaminsky Joshua J   Kaminsky Kathryn K   Keegan Lindsay T LT   Lauer Stephen A SA   Lemaitre Joseph C JC   Lessler Justin J   Meredith Hannah R HR   Perez-Saez Javier J   Shah Sam S   Smith Claire P CP   Truelove Shaun A SA   Wills Josh J   Marshall Maximilian M   Gardner Lauren L   Nixon Kristen K   Burant John C JC   Wang Lily L   Gao Lei L   Gu Zhiling Z   Kim Myungjin M   Li Xinyi X   Wang Guannan G   Wang Yueying Y   Yu Shan S   Reiner Robert C RC   Barber Ryan R   Gakidou Emmanuela E   Hay Simon I SI   Lim Steve S   Murray Chris C   Pigott David D   Gurung Heidi L HL   Baccam Prasith P   Stage Steven A SA   Suchoski Bradley T BT   Prakash B Aditya BA   Adhikari Bijaya B   Cui Jiaming J   Rodríguez Alexander A   Tabassum Anika A   Xie Jiajia J   Keskinocak Pinar P   Asplund John J   Baxter Arden A   Oruc Buse Eylul BE   Serban Nicoleta N   Arik Sercan O SO   Dusenberry Mike M   Epshteyn Arkady A   Kanal Elli E   Le Long T LT   Li Chun-Liang CL   Pfister Tomas T   Sava Dario D   Sinha Rajarishi R   Tsai Thomas T   Yoder Nate N   Yoon Jinsung J   Zhang Leyou L   Abbott Sam S   Bosse Nikos I NI   Funk Sebastian S   Hellewell Joel J   Meakin Sophie R SR   Sherratt Katharine K   Zhou Mingyuan M   Kalantari Rahi R   Yamana Teresa K TK   Pei Sen S   Shaman Jeffrey J   Li Michael L ML   Bertsimas Dimitris D   Skali Lami Omar O   Soni Saksham S   Tazi Bouardi Hamza H   Ayer Turgay T   Adee Madeline M   Chhatwal Jagpreet J   Dalgic Ozden O OO   Ladd Mary A MA   Linas Benjamin P BP   Mueller Peter P   Xiao Jade J   Wang Yuanjia Y   Wang Qinxia Q   Xie Shanghong S   Zeng Donglin D   Green Alden A   Bien Jacob J   Brooks Logan L   Hu Addison J AJ   Jahja Maria M   McDonald Daniel D   Narasimhan Balasubramanian B   Politsch Collin C   Rajanala Samyak S   Rumack Aaron A   Simon Noah N   Tibshirani Ryan J RJ   Tibshirani Rob R   Ventura Valerie V   Wasserman Larry L   O'Dea Eamon B EB   Drake John M JM   Pagano Robert R   Tran Quoc T QT   Ho Lam Si Tung LST   Huynh Huong H   Walker Jo W JW   Slayton Rachel B RB   Johansson Michael A MA   Biggerstaff Matthew M   Reich Nicholas G NG  

Proceedings of the National Academy of Sciences of the United States of America 20220408 15


Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hu  ...[more]

Similar Datasets

| S-EPMC8236414 | biostudies-literature
| S-EPMC9247236 | biostudies-literature
| S-EPMC9261899 | biostudies-literature
| S-EPMC8963571 | biostudies-literature
| S-EPMC8062561 | biostudies-literature
| S-EPMC5690687 | biostudies-literature
| S-EPMC9669511 | biostudies-literature
| S-EPMC10038385 | biostudies-literature
| S-EPMC7933264 | biostudies-literature
| S-EPMC10395946 | biostudies-literature